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O objetivo principal de uma célula colaborativa industrial é a criacio de um
espaco onde os humanos e robots possam trabalhar para um objetivo comum com
eficiéncia e seguranca. Nos dias que correm, a maioria das células colaborativas
requer que operadores humanos facam gestos pouco naturais para comunicarem
com o robot. Estes sistemas tém também interacBes limitadas entre ambos:
muitas das vezes a reacdo a movimentos inesperados do humano é uma paragem
abrupta. Esta tese prople resolver estas limitacoes criando mecanismos de
percecdo avancada com base em midltiplos sensores de miltiplas modalidades.
Multiplos sensores para garantir que a célula estd inteiramente coberta, mesmo
quando ha oclusbGes ndo previstas. Miltiplas modalidades que permitem trazer
diferentes tipos de informacgdo essencial sobre o interior da célula. O uso de uma
percecdo avancada e robusta vai garantir uma linguagem entre o humano e o
robot, onde o sistema automatico suporta o peso da comunicacao, criando assim
operacdes mais eficientes.
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The ultimate goal of a collaborative manufacturing cell envisions a space where
humans and robots work on a standard task with efficiency and complete safety.
Nowadays, most collaborative cells required human operators to perform unnatural
gestures to communicate with the robot. Additionally, these systems display limited
interaction between humans and robots: often, the reaction to unexpected motions
from the human operator is solved by halting the robot’s movement. This plan
proposes to tackle these limitations by developing advanced perceptual mechanisms
based on multiple sensors of multiple modalities. Multi-modal because different
modalities bring different types of information that give rich information about
inside the cell. Multi-sensor to ensure that the cell is fully covered, even when there
are unforeseen occlusions. Using advanced and robust perception will guarantee a
language between the human and the robot, where the automatic system supports
the communication burden, creating an efficient operation.
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CHAPTER

Introduction

1.1 BACKGROUND AND CONTEXT

The integration of robots designed to collaborate with humans has expanded significantly
across sectors such as manufacturing, logistics, healthcare, and services [1], [2]. In contrast to
traditional industrial robots, typically confined to isolated workspaces, collaborative robotic
systems are developed to operate in proximity to humans, either by virtue of compliant
mechanics (e.g., torque or force control) or through advanced perception capabilities. This
shift towards shared workspaces is part of a broader trend in robotics that prioritises flexibility,
adaptability, and responsiveness to complex and dynamic human behaviour. Whether sup-
porting surgical procedures or operating in public environments, such robots are increasingly
required to function within settings marked by unpredictability and variation.

While the term collaborative robots (or cobots) is often used to describe robots with
inherent mechanical safety features, this thesis adopts a broader interpretation. The emphasis
here is on perception-based collaborative interactions, those that depend on rich, multi-modal
sensor inputs to interpret their surroundings and human partners. This conceptual framing is
deliberate: the contributions of the thesis focus not on mechanical compliance, but on active
perception, which is fundamental to intelligent and adaptive robotic behaviour. By making
this distinction explicit, the thesis avoids conflating its contributions with earlier generations
of cobots and underscores its relevance to perception-driven systems.

Robust perception in collaborative interactions requires a high degree of situational aware-
ness and environmental understanding. Robots must perceive their surroundings accurately,
interpret human motion in real-time, and adjust their behaviour responsively [3]. This
necessitates reliable sensor fusion and the ability to operate under partial observations or oc-
clusions. Two aspects of perception are especially critical: accurate extrinsic calibration across
heterogeneous sensors, and reliable 3D human pose estimation under realistic deployment
conditions.

Modern robotic platforms often incorporate combinations of RGB cameras, RGB-D sensors,

and LiDAR devices. These may be fixed in the environment, mounted on robot bodies, or



attached to articulated arms. Integrating their outputs requires precise extrinsic calibration,
especially where sensor fields of view only partially overlap or when the robot is in motion
[4], |5]. However, the diversity of sensor modalities, asynchronous data streams, and the
absence of shared features between modalities pose significant calibration challenges. Current
approaches are often tailored to specific sensor pairings and fail to generalise to complex,
mixed-modality configurations [6].

In parallel, estimating the 3D pose of humans in collaborative environments remains a
difficult problem. Although multi-view approaches have progressed rapidly in recent years,
their robustness diminishes in the presence of occlusions, sparse viewpoints, or noisy detections
[7], [8]. In real-world scenarios, people may be partially visible due to obstructions or body
posture, and their movements are often unpredictable. As a result, perception pipelines
must be both real-time and resilient, capable of delivering accurate full-body estimates from

incomplete data and integrating those estimates into robotic decision-making frameworks.

1.2 MOTIVATION AND PROBLEM STATEMENT

Despite substantial progress in the fields of sensor calibration and human pose estimation,
current solutions tend to address these challenges in isolation. This fragmentation limits the
scalability, generality, and real-world applicability of robotic perception systems. There is a
pressing need for end-to-end pipelines that unify these tasks and accommodate the constraints
of collaborative environments.

Several research gaps remain at the intersection of sensor calibration and human motion
estimation. On the calibration side, there is a lack of general-purpose tools for multi-modal
sensor networks that simultaneously handle RGB, RGB-D, and LiDAR devices. Factory
calibrations are often insufficient when sensors are deployed in arbitrary arrangements or
subjected to dynamic motion. Hand-eye calibration, involving sensors mounted on robotic
arms, poses additional challenges, especially when depth data or constrained trajectories are
involved. Existing approaches generally lack the flexibility and robustness required for such
scenarios.

Regarding 3D pose estimation, most methods still depend heavily on high-quality 2D joint
detections and often underperform when faced with occlusions or poor visibility. Deep learning
models, although effective in curated datasets, frequently fail to generalise to unstructured
settings. Moreover, pose estimation is rarely developed with explicit consideration for robotic
integration, real-time responsiveness, or safety monitoring. Temporal continuity, anatomical
constraints, and motion priors are underutilised despite their potential benefits.

Both perception components, calibration and pose estimation, also suffer from poor
modularity and reproducibility. Tools that are accurate, accessible, and interpretable are still
scarce, yet they are essential for practical deployment in human-robot collaboration.

This thesis is motivated by the need to bridge this gap by developing a unified, deployable
framework for perception in collaborative robotics. The central hypothesis is that accurate
sensor calibration and robust human pose estimation must be treated as interdependent

challenges in order to achieve effective robot behaviour in shared workspaces.



The first research objective is to propose an extension of the Atomic Transformations
Optimisation Method (ATOM]I) calibration framework that supports RGB, RGB-D, and
LiDAR devices in both static and dynamic configurations. The method introduces a sensor-
to-pattern optimisation strategy, supports hand-eye scenarios, and integrates into the Robot
Operating System (ROS). It is designed to cope with practical constraints such as partial
sensor overlap and constrained motion.

The second objective is to design a video-based, multi-view 3D human pose estimation
method. This method incorporates temporal optimisation, anatomical priors, and uncertainty
modelling to infer full-body poses from noisy or sparse 2D observations. It targets scenarios
with limited camera coverage and is engineered for real-time use in robotics.

Together, these contributions aim to enhance the accuracy, robustness, and real-world
usability of perception systems in collaborative settings. By addressing core perceptual
challenges in a unified way, the thesis contributes towards safer, more adaptive, and more

intelligent robotic collaboration in sensor-rich, human-populated environments.

1.3 RESEARCH QUESTIONS AND HYPOTHESIS

This thesis investigates two interrelated but independently addressed challenges in collabo-
rative robotics: (i) the extrinsic calibration of heterogeneous and dynamic sensor configurations,
and (ii) the estimation of 3D human pose using multi-camera RGB setups. These challenges
are approached with the goal of improving spatial perception in environments where humans

and robots operate in close proximity, often sharing tasks or space.

1.3.1 Research Questions

The investigation is guided by the following research questions:

1. RQ1: How can calibration algorithms be designed to support heterogeneous, multi-
modal sensor setups—including both fixed and mobile configurations, while reducing
reliance on manual procedures and maintaining spatial accuracy?

2. RQ2: What optimisation strategy enables consistent and accurate extrinsic calibration
in dynamic environments where sensor positions or orientations may vary over time?

3. RQ3: How can 3D human pose estimation systems based solely on RGB imagery
be configured to offer sufficient accuracy, robustness to occlusion, and computational

efficiency for integration into collaborative robotic environments?

1.3.2 Research Hypothesis

The central hypothesis underpinning this thesis is as follows:

Robust extrinsic calibration methods for heterogeneous and dynamic sensor config-
urations, alongside reliable multi-view human pose estimation strategies, provide
essential perceptual foundations for improving spatial awareness and safety in

collaborative robotic systems.



This hypothesis reflects the view that while calibration and pose estimation are developed
as independent subsystems within this work, both are instrumental in enabling reliable,
responsive, and human-aware perception pipelines. The research does not seek to demonstrate
a direct causal link between them, but rather to show how advances in each contribute toward

the shared goal of enabling perception-driven human-robot collaboration.

1.4 OBJECTIVES

The overarching aim of this thesis is to contribute to the development of perceptually
aware collaborative robotic cells, with a focus on two fundamental enablers: multi-modal
sensor calibration and 3D human pose estimation. These capabilities are essential for ensuring
safe, efficient, and intelligent human-robot interaction (HRI) in industrial and manufacturing
environments. While collaborative robots (cobots) have become increasingly common in
production settings, their deployment is still constrained by limited environmental perception,
inflexible calibration procedures, and a lack of human-awareness capabilities.

To address these limitations, the thesis pursues two core research objectives, each targeting

a critical gap in the current state of the art:

e Objective 1: To investigate how the existing calibration framework can be
applied and extended for use in robotic collaborative cell scenarios.
The framework, initially developed as a general calibration solution for multi-
modal, multi-sensor systems, already supports various sensor types and configurations.
This thesis builds upon [ATOM] to assess its applicability in real-world robotic cells and
to extend its capabilities where needed, most notably to support the calibration of depth
sensors. Rather than creating a new calibration system from scratch, the contribution
lies in adapting and enhancing [ATOM]to address domain-specific requirements, including
modularity, support for RGB-D, and integration within robot operating environments.

e Objective 2: To design and implement a 3D human pose estimation framework tailored
to collaborative robotics.
Reliable detection and tracking of human posture is essential for safe and effective
operation in human-robot shared environments. Although human pose estimation
(HPE) has advanced rapidly, most systems have been developed outside the robotics
context, often trained on unrealistic datasets or under assumptions that do not hold in
constrained, cluttered, or occlusion-prone industrial scenarios.
This thesis develops a multi-camera RGB-based pose estimation solution, optimised for
robotic integration. It explores trade-offs in camera placement, algorithmic performance,
and robustness to occlusion. The system is evaluated on both technical accuracy and
usability, with the goal of enabling human-aware robot behaviours such as anticipatory

motion planning or adaptive safety zones.

The outcomes of these two objectives aim to support the broader vision of integrating
robust perception systems into collaborative robotic platforms that must operate safely,

flexibly, and efficiently alongside humans.



1.5 OVERVIEW OF METHODOLOGY AND EVALUATION STRATEGY

This thesis adopts a comprehensive methodology combining algorithm design, system
development, and empirical validation to advance two critical components of perceptually
aware collaborative robotic systems: extrinsic calibration of multi-modal, multi-sensor setups,
and 3D human pose estimation using multiple RGB cameras. The approach is based on
the requirements of real-world robotic applications, prioritising robustness, automation, and
modularity.

The first core strand involves the development of an automatic, optimisation-based
calibration pipeline designed to handle heterogeneous sensor systems, including fixed sensors
and those mounted on robotic arms. The calibration process is formulated as a non-linear
optimisation problem that minimises spatial and reprojection errors across sensor pairs, using
a movable calibration target. It supports RGB, RGB-D, and LiDAR modalities, and includes
procedures for hand-eye calibration. Implemented within the framework, the system is
designed for scalability and integration into collaborative robotic environments.

To evaluate the calibration solution, the thesis employs both synthetic and real-world setups.
Controlled experiments are conducted in a laboratory robotic cell, using known geometric
configurations and high-precision ground truth provided by simulation. Performance is
measured using reprojection error across different modality combinations in both simulated
and real-world data. Simulation-based evaluations allow controlled variation of parameters
such as baseline distances, field of view overlap, and occlusion levels. Comparative baselines
include established calibration tools such as Kalibr [9], against which the developed method is
benchmarked for accuracy.

The second strand of the thesis focuses on the design of a 3D human pose estimation
pipeline based on synchronised RGB video from multiple cameras. The system leverages
existing deep-learning-based 2D keypoint detectors as a front-end and performs triangulation
through a calibrated multi-camera setup to recover 3D joint positions. The framework is
designed to be lightweight and compatible with real-time robotic systems, incorporating
temporal filtering and spatial reasoning to maintain stability in the presence of occlusions,
viewpoint variation, and rapid motion. Camera extrinsics are derived from the proposed
calibration pipeline, ensuring full spatial consistency between the perception and control layers
of the robotic system.

The Human Pose Estimation (HPE]) component is evaluated using public datasets such as
MPI-INF-3DHP [10], which provide initial comparisons for 3D joint localisation error and
detection robustness. Evaluation metrics include 3D joint localisation error and percentage of
correct keypoints (3DPCK). The system’s real-time performance is assessed in end-to-end
integration with a collaborative robot, focusing on response times and consistency in triggering
safety or behavioural responses based on human motion.

By separating the evaluation of the calibration and HPE components, the thesis provides
a transparent assessment of each system’s capabilities and limitations. This dual-layered

strategy ensures that each technical contribution is validated both in isolation and in the



context of its integration into a perceptually aware collaborative robotic cell.

1.6 CONTRIBUTIONS

This thesis addresses fundamental challenges in multi-sensor calibration and 3D human
pose estimation in collaborative robotics. It proposes novel methodological and system-
level contributions aimed at improving accuracy, automation, and robustness in human-
robot interaction contexts. The research spans from the design of calibration pipelines for
heterogeneous sensor setups to the development of real-time, multi-view pose estimation
systems suitable for dynamic and safety-critical environments.

The contributions can be grouped into two main domains:

1. Multi-modal Sensor Calibration: The thesis introduces an extrinsic calibration
framework that supports multiple sensor types (RGB, RGB-D, LiDAR), including static
and dynamic configurations. It offers an adaptable method for calibrating hand-eye and
inter-sensor transforms within a unified system, implemented in and validated in
real-world robotic cells.

2. 3D Human Pose Estimation: A multi-camera RGB-based pose estimation system is
presented, enabling markerless, real-time inference of human skeletal pose with enhanced
spatial consistency. The proposed approach is designed to function reliably under
occlusions, varying lighting conditions, and changing viewpoints.

The main publications that result from this research:

o Rato D., Oliveira M., Santos V., Gomes M., Sappa A. (2022), A sensor-to-pattern
calibration framework for multi-modal industrial collaborative cells. In: Journal of
Manufacturing Systems (Journal), doi: 10.1016/j.jmsy.2022.07.006

o Rato D., Oliveira M., Santos V., Sappa A., Raducanu B. (2024), Multi-View 2D to 3D
Lifting Video-Based Optimization: A Robust Approach for Human Pose Estimation with
Occluded Joint Prediction. In: 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems, doi:10.1109/TROS58592.2024.10802200

e Rato D., Oliveira M., Santos V., Sappa A., New Methodology to Calibrate Depth
Sensors in Multi-Modal Dynamic Setups. Submitted: TEEE Access

Supplementary publications developed in parallel with or in support of this research:

o Oliveira M., Pedrosa E., Aguiar A., Rato D., Neves F., Dias P., Santos V. (2020), ATOM:
A general calibration framework for multi-modal, multi-sensor systems. In: Expert
Systems with Applications (Journal), doi: 10.1016/j.eswa.2022.118000

o Santos V., Dias P., Oliveira M., Rato D. (2022), Multimodal Sensor Calibration Ap-
proaches in the ATLASCAR Project. In: ICT Applications for Smart Cities (Book
Chapter), doi: 10.1007/978-3-031-06307-7__7

1.7 DOCUMENT STRUCTURE

The document is organised as follows:



e Chapter 2 presents a comprehensive literature review that lays the theoretical and
methodological foundations for the thesis. It is structured around two key pillars of
perception in collaborative robotic systems: extrinsic calibration of multi-modal sensor
setups and 3D human pose estimation from multi-camera RGB systems. The chapter
begins by analysing the challenges of calibrating multi-modal sensors. It reviews target-
based and targetless calibration strategies, including recent advances in motion-based,
mirror-based, and learning-driven approaches, while highlighting their trade-offs in
terms of accuracy, scalability, and deployability. The review then turns to hand-eye
calibration techniques, examining both classical formulations and recent efforts to
address RGB-D integration and modular robot architectures. In the second part, the
chapter surveys the state of the art in 3D human pose estimation, comparing geometric
triangulation, volumetric fusion, and learning-based models, including transformers
and diffusion networks, while discussing their robustness, accuracy, and relevance to
real-world, industrial applications. Together, these insights contextualise the research
gaps addressed by this thesis and inform the design of the proposed calibration and
perception framework.

e Chapter 3 presents a sensor-to-pattern calibration framework tailored for complex,
multi-modal collaborative robotic cells, addressing the challenge of achieving accurate
extrinsic calibration in environments where numerous RGB, depth, and LiDAR sensors
often lack overlapping fields of view. Departing from conventional sensor-to-sensor
calibration techniques, the chapter introduces a unified optimisation-based approach that
aligns each sensor to a common calibration pattern, enabling robust data fusion across
modalities. It details the theoretical foundations of this method, the implementation
of automatic and manual labelling mechanisms for different sensor types, and the
deployment of a realistic simulation environment using and Gazebo. The chapter
also evaluates the framework through both simulated and real-world experiments,
demonstrating its superiority over existing tools like OpenCV, Kalibr, and ICP in terms
of calibration accuracy and scalability.

e Chapter 4 introduces an extended calibration methodology designed to accurately
align depth sensors alongside RGB and LiDAR devices in dynamic, multi-modal robotic
systems, including hand-eye configurations. Building upon the [ATOM] framework, this
chapter expands its capabilities to support depth modality calibration through a sensor-
to-pattern approach, which optimises both sensor and pattern poses simultaneously. The
methodology is validated in both simulated and real-world environments, demonstrating
its capacity to calibrate fixed and mobile sensors even under partial detections or
limited field-of-view overlap. It includes the development of dedicated cost functions
for depth sensors, along with semi-automated labelling tools tailored to the nature of
range data. The chapter presents extensive experimental results, first with standalone
RGB-D systems, improving on factory calibrations, and then with a complex multi-sensor
setup featuring a robotic manipulator. Across all tests, the method exhibits sub-pixel

to low-pixel accuracy and surpasses existing tools, particularly in scenarios involving



non-overlapping, cross-modality sensor configurations.

Chapter 5 presents a robust multi-view, video-based approach for 3D human pose
estimation, designed to handle occlusions and noise in collaborative robotic environments.
By combining 2D-to-3D lifting with temporal optimisation and skeletal constraints,
the method predicts occluded joints with high accuracy using limited camera views.
The chapter details the algorithm’s design, real-time adaptation, and evaluation on
benchmark datasets, demonstrating its effectiveness under varying conditions, including
joint detection error, partial visibility, and reduced camera setups.

Chapter 6 revisits the research objectives and synthesises the core contributions of the
thesis, particularly in the areas of sensor calibration and 3D human pose estimation for
collaborative robotic systems. It reflects on the methodological and practical limitations
encountered, outlines key implications for robotic perception, and proposes promising
directions for future research and deployment. The chapter consolidates the insights
developed throughout the thesis and positions them within the broader context of

human-aware and adaptable robotics.



CHAPTER

Literature Review

2.1 INTRODUCTION: CONTEXT AND PERCEPTUAL CHALLENGES

Collaborative robotic systems, particularly those deployed in manufacturing cells, represent
a fundamental evolution in industrial automation, shifting from isolated, rigid automation
toward dynamic, human-centred work environments. In these systems, human operators and
robots share physical workspaces, perform interdependent tasks, and adapt in real time to
changing operational conditions. The core objective of collaborative cells is to combine the
precision, repeatability, and strength of robots with the contextual understanding, flexibility,
and problem-solving capabilities of human workers.

This paradigm is central to both Industry 4.0 and emerging Industry 5.0 frameworks,
which envision highly flexible, reconfigurable, and semantically enriched production systems.
In collaborative cells, the division of labour between human and robot is fluid rather than
fixed, requiring situational awareness, adaptive task allocation, and robust safety mechanisms.
Such environments are characterised by spatial complexity, non-deterministic workflows, and
high variability in human behaviour and sensor visibility. These constraints create significant
technical challenges for perception, control, and system-level coordination.

Among these challenges, precise spatial perception and robust human—machine interaction
stand out as enabling capabilities. Robots must operate with full awareness of their surround-
ings, dynamically adapting to human motion, object changes, and evolving task contexts.
This requires the integration of heterogeneous sensors, including RGB cameras, depth sensors
(e.g., structured light or time-of-flight), LiDARs, and panoramic or stereo vision systems, to
construct a consistent and up-to-date spatial model of the environment. At the same time,
robots must detect and interpret human pose, gestures, and intention to ensure safe and fluent
interaction.

Two core perceptual problems arise in this context:

e Extrinsic calibration, the estimation of the rigid-body transformations between the

coordinate frames of each sensor, is essential for fusing data into a unified spatial

reference frame;



e 3D human pose estimation, the task of accurately reconstructing the body configuration
of human operators, is critical for predicting motion, enforcing safety boundaries, and
enabling collaborative planning.

Achieving these capabilities is especially demanding in collaborative cells, where sensors
may be fixed or mobile, overlapping or non-overlapping in field of view, and subject to
variable lighting and occlusion. Standard calibration routines often fail in such environments,
particularly when sensors cannot simultaneously observe the same calibration pattern or must
remain fixed during operation. Likewise, many human pose estimation algorithms assume
clean, unobstructed views or known camera parameters, which are not always available in
real-world scenarios.

These two perceptual problems, extrinsic calibration and 3D human pose estimation,
are not only challenges in their own right, but also foundational dependencies for many of
the higher-level approaches currently shaping collaborative robotics. The remainder of this
section examines several such contributions. While diverse in their methods and scope, these
approaches are either designed to directly mitigate these perception-related limitations or are
predicated on the assumption that such perceptual capabilities are already robustly in place.
As such, each must be understood in relation to how it leverages, constrains, or advances the
two critical problems outlined above.

While the research contributions reviewed in the following paragraphs span different
technical layers—from control and planning to semantics, monitoring, and simulation—they
are closely linked by their dependence on the two perceptual capabilities identified above. In
particular, extrinsic calibration underpins the reliable fusion of heterogeneous sensor data,
enabling coherent spatial reasoning and consistent perception across the system. Similarly,
3D human pose estimation is foundational for anticipating human actions, ensuring safety,
and enabling fluid interaction. Some approaches aim to directly improve interaction by
assuming these capabilities as a given (e.g., gesture-based control or semantic interpretation),
while others focus on higher-level coordination that implicitly relies on accurate perception
to function correctly. Recognising this dependency allows us to view these contributions
not as disconnected innovations but as components within a layered architecture—each
advancing the broader objective of seamless human-robot collaboration by either addressing
or operationalising perception in complex environments.

Recent research shifts toward more advanced, digitally enabled collaborative cells that
incorporate learning-based interaction, multi-modal perception, and semantic awareness.
Baptista et al. [11] develop a laboratory-scale collaborative cell featuring deep learning
modules for gesture recognition, contact classification, and human intention anticipation,
coordinated through a ROS-based architecture. This approach enables robots to adapt their
behaviour in response to both explicit commands (e.g., hand gestures) and implicit cues (e.g.,
hand-object interactions), thereby creating more natural and fluent interactions.

At the level of control and execution, real-time adaptation becomes a key design objective.
Wei et al. [12] propose a convex optimisation framework for online trajectory generation in

dual-robot cells, capable of dynamically replanning in response to human presence and shifting
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task priorities. Tonola et al. [13] introduce an anytime-informed re-planning algorithm that
balances human safety and task efficiency, with an emphasis on trajectory legibility to improve
human trust and predictability.

Complementing low-level control are advances in semantic reasoning and ontological
modelling. The SOHO ontology (Sharework Ontology for Human-Robot Collaboration) is
introduced by Umbrico, Orlandini, and Cesta [14] as a domain-specific ontology designed to
endow collaborative robots with context-aware reasoning capabilities in HRC settings. Built
upon foundational ontologies, SOHO structures knowledge into layered contexts, environment,
behaviour, and production, enabling the formal representation of both observable properties
(e.g., posture, motion) and abstract constructs (e.g., intentions, skills, risk levels). This
framework supports robots in interpreting human actions, inferring production goals, and
dynamically adapting plans in response to changing workplace conditions. Later developments
by Umbrico et al. [15] refine this model and demonstrate its applicability in real industrial
scenarios, enhancing robot awareness and decision-making in collaborative manufacturing
environments.

To support real-time adaptation, multi-modal monitoring systems also emerge. Argyrou
et al. [16] develop a modular data fusion platform that integrates sensor data from robotic
controllers, human tracking modules, and safety systems to generate a shared situational
model of the collaborative workspace. Such systems allow not only reactive responses to
human actions but also proactive anticipation of task state transitions.

Finally, the emergence of digital twin technologies enables simulation-driven optimisation
of collaborative cell layouts and behaviour prior to deployment. Cella et al. [17] introduce a
digital twin architecture that uses Al-guided simulation to generate optimal robot programs
and task allocations, significantly reducing the design-to-deployment gap and improving
system resilience.

These advances in modelling, planning, and semantic reasoning increasingly depend on
robust perceptual capabilities to operate reliably in real-world environments. As collabo-
rative cells become more adaptive and simulation-driven, the need for accurate, real-time
understanding of both the workspace and human behaviour becomes even more critical. In
this context, perception is not merely a supporting function but a core enabler of intelligent
collaboration.

This chapter builds on these developments by offering a critical review of the state of the
art in extrinsic calibration and 3D human pose estimation, two perceptual foundations of
collaborative robotics. The first part surveys calibration techniques across sensor modalities
and spatial configurations, including target-based, targetless, and learning-driven methods.
The second part explores multi-camera 3D pose estimation approaches, comparing geometric,
volumetric, and transformer-based architectures in terms of their accuracy, robustness, and
deployability in collaborative cell settings. Together, these analyses lay the groundwork
for the perceptual framework proposed in this thesis, aimed at enabling safe, scalable, and

semantically aware collaboration between humans and robots.
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2.2  EXTRINSIC CALIBRATION

Extrinsic calibration is a foundational requirement in multi-sensor robotic systems. It
consists in estimating the rigid-body transformation between the coordinate frames of different
sensors, enabling all measurements to be expressed within a common spatial reference frame.
In collaborative robotic environments, where perception must be both precise and real-time,
this calibration is critical to ensure coherent sensor fusion. These systems often integrate
RGB cameras, depth sensors (e.g., structured light, time-of-flight), [LIDARE, panoramic
cameras, radars, and IMUs, each being characterised by distinct fields of view, resolutions,
and measurement principles.

Figure illustrates the concept of extrinsic calibration using homogeneous coordinates.
Let sensor A and sensor B observe a common calibration target P. The pose of each sensor
relative to the target is expressed by a transformation matrix in , mapping coordinates

from the target frame to the sensor frame:

(2.1)

Rap tap Rgp tpp
T = , T = ,
i [ e 4 ] - [ e o ]

where R € R3*3 is a rotation matrix and t € R3*! is a translation vector. The extrinsic

transformation between sensor A and sensor B, T 45, is computed as:

Tap = TaprTgp, (2.2)

allowing a point Xp € R**! measured in the homogeneous coordinate frame of sensor B to

be expressed in the frame of sensor A via:

This formulation is general, efficient, and central to applications involving multi-sensor
fusion, 3D reconstruction, and spatial alignment in collaborative robotic systems.

In practical applications, the effectiveness of multi-sensor systems hinges on the precision
of these extrinsic transformations. Whether in relatively straightforward cases such as
RGB-depth fusion [18], or in more complex environments like intelligent vehicles [19], [20],
smart camera networks [21], underwater stereo systems [22], robotic inspection platforms [23],
or satellite-based image integration [24], extrinsic calibration ensures geometric consistency
and enables accurate data association across heterogeneous streams.

While traditional methods rely on geometric patterns and controlled motion to perform
calibration, recent efforts aim to automate the process and reduce dependency on structured
targets. Learning-based strategies emerge to tackle calibration in dynamic and unstructured
scenarios, with promising results. For instance, Yaqing and Huaming [25] introduce a deep
learning framework combining depth and height supervision with an attention-based fusion
module, achieving robust calibration without predefined markers. Such approaches represent
a broader shift in calibration research, from static procedures toward adaptive, data-driven

pipelines better suited to the demands of modern robotics.
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Figure 2.1: Extrinsic calibration between two sensors using a common reference target P. Each sensor
estimates its pose relative to the target using a rigid transformation in homogeneous
coordinates. The relative pose T 4p is obtained as Tap = TAPTE,}D.

2.2.1 Sensor Combinations and Configurations

The majority of the literature focuses on pairwise calibration of sensor combinations, for
example, RGB-RGB [26]-[30], RGB-depth [31]-[34], and RGB{LiDARI [35]-[42]. Traditional
techniques, such as Zhang’s method [8], prove particularly effective for RGB-RGB calibration
in overlapping fields of view, typically leveraging checkerboard or Charuco patterns [43],
[44] visible to multiple sensors. Extensions of these methods significantly improve accuracy
in calibrating short-range depth sensors [33], [45], [46], achieving reprojection errors in the
sub-millimetre to pixel range.

Figure illustrates a typical setup in which multiple sensors share overlapping fields of
view. In such configurations, a common calibration target can be simultaneously observed
by all sensors, facilitating robust extrinsic calibration through standard pairwise or global
optimisation methods.

However, the pairwise nature of these methods introduces limitations when applied to
larger sensor networks. The number of required transformations increases combinatorially
with the number of sensors, complicating calibration and amplifying cumulative errors. For
instance, to calibrate sensors A, B, and C, one may choose direct or indirect paths (e.g.,
A-C, A-B-C, or B-A-C), with no guarantee of minimal error, particularly when dealing with
heterogeneous modalities or non-symmetric objective functions. Moreover, the calibration
order (A to B vs. B to A) influences outcomes, introducing ambiguity and error propagation
across the network.

Modern sensor configurations, especially in collaborative cells, further complicate the
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Figure 2.2: Example of overlapping fields of view (FoVs) among four sensors observing a common
calibration pattern. This setup supports standard pairwise or global calibration using
shared visual features.

process. Sensors are often mounted around the workspace in non-overlapping arrangements to
avoid occlusion and to ensure safety coverage. In these scenarios, no single calibration pattern
is visible to all sensors simultaneously, requiring alternative calibration strategies. Figure
shows such a case where each sensor observes only a portion of the environment, with minimal
or no shared field of view. This layout reflects real-world setups in collaborative workcells,
where static infrastructure and safety constraints preclude frequent repositioning.

While methods like that of Raposo et al. [47] address these challenges through mirror-based
calibration, they still depend on pairwise registration and require physical movement of the
sensor, conditions often incompatible with fixed installations in collaborative cells.

In response to these limitations, Oliveira et al. [48] propose [ATOM] a general calibration
framework capable of handling multi-sensor, multi-modal configurations without relying on
rigid pairwise connections. reformulates calibration as a global optimisation problem
over a transformation graph, where calibration constraints apply across sensor-to-sensor,
sensor-in-motion, and sensor-to-frame configurations. Its generality stems from operating on
indivisible, atomic transformations, thereby allowing the calibration of complex topologies
within a unified framework. Notably, [ATOM] also integrates seamlessly with and is
validated across diverse robotic platforms, from autonomous vehicles to agricultural robots
and collaborative arms [49], [50].

Recent contributions further advance calibration accuracy by leveraging novel geometric
feature extraction techniques. Hua et al. [51] exploit edge correspondences from both [LIDARI]

and camera data, enabling calibration using everyday objects like books or boxes. Kim et
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Figure 2.3: Example of non-overlapping fields of view (FoVs) in a collaborative robotic setup. Sensors
are arranged to cover different zones of the workspace, preventing the use of conventional
target-based calibration with full visibility.

al. [52] employ circular feature geometry combined with constrained optimisation, improving
robustness under sensor noise. These approaches reflect a broader shift toward more flexible,
accurate, and modular calibration pipelines.

These challenges become even more pronounced in RGB-D systems, motivating a closer

examination of dedicated depth calibration techniques, as discussed in the next section.

2.2.2 RGB-RGB Calibration Methods

Calibration between RGB cameras, often referred to as stereo or multi-camera calibration,
is a well-established field in computer vision. The goal is to estimate the relative pose
between cameras such that measurements captured from each can be expressed in a common
reference frame. Classical approaches rely on structured targets observed simultaneously
across overlapping fields of view.

Zhang’s planar method [8] remains the most widely used approach, employing multiple
views of a checkerboard to jointly estimate intrinsic and extrinsic parameters. Subsequent
works refine this pipeline to improve accuracy and robustness. For instance, Su et al. [26] and
Dinh et al. [29] propose efficient stereo calibration routines, while Ling et al. [27] and Mueller
et al. [28] address long-baseline calibration and robustness under geometric distortions.

Charuco boards, a hybrid of checkerboard grids and ArUco markers, gain popularity for
improving marker detection in adverse conditions such as low lighting or oblique viewing
angles. Studies by Romero-Ramirez et al. [44] and Hu et al. [43] highlight their performance

advantages in real-world setups. Garrido-Jurado et al. [53] further contribute by optimising
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ArUco marker dictionaries to improve detection rates and minimise false positives.

Recent research extends calibration to dynamic scenarios. Wu et al. [30] introduce a
method that leverages temporal consistency in a real-time stereo pipeline. Others like Mueller
et al. [28] explore multi-camera networks with partial overlaps and distributed topologies,
relevant for large-scale environments such as warehouses or assembly cells.

In summary, RGB-RGB calibration methods are mature, reliable, and well-supported by
toolkits. Current research focuses on increasing automation, supporting partial overlaps, and

improving calibration in the absence of structured targets.

2.2.3 RGB-LiDAR Calibration Methods
Calibrating RGB cameras with [LIDAR] sensors poses distinct challenges due to the het-

erogeneity in sensing modalities: image-based projection versus spatial sampling. A robust
transformation between these sensors is essential to merge rich texture information from
images with accurate spatial geometry from [LIDARI

Classical approaches use shared planar calibration targets. Vasconcelos et al. [35] and
Wang et al. [40] mount checkerboards or custom boards within both the camera’s and [LIDARTs
Field-of-View (FoV]). The calibration is typically achieved via plane fitting and pose estimation
relative to the board. Guindel et al. [39] adapt these methods for vehicular platforms, using
board detection for on-the-fly calibration. Other works, such as Yang et al. [41], employ
triangulated targets or volumetric references to improve spatial alignment.

To reduce dependency on explicit targets, Zhou et al. [38] propose targetless calibration
based on mutual information between image gradients and [LiIDARI] reflectivity. This principle
sees further extensions in recent years: Zhu et al. [54] introduce a reflectivity edge-matching
algorithm; Wang et al. [55] propose a ray-traced mesh alignment scheme; and Yaqing and
Huaming [25] combine depth, height, and learned features in a deep attention-based network.

Mirror-based methods are especially relevant for fixed installations where shared [FoVl is
unavailable. Raposo et al. |[47] and Huang et al. [37] use planar mirrors to simulate overlap
between camera and [LiDAR] sensors. These configurations allow for robust calibration without
moving the sensors, making them ideal for static environments.

Practical concerns such as mounting, environment reflectivity, and occlusions also influ-
ence method selection. While target-based methods typically yield sub-centimetre accuracy,
targetless or motion-based techniques (e.g., Cattaneo et al. [56], Lin et al. [57]) prove more
suitable for flexible or large-scale deployments. However, they often require more data and
complex optimisation.

Overall, RGB{LiDAR] calibration methods now span from pattern-dependent pipelines to
targetless, learning-based frameworks. As these systems increasingly appear in dynamic and
collaborative contexts, the trade-off between accuracy, autonomy, and scalability becomes

central to design decisions.

2.2.4 RGB-D Calibration Methods

Extrinsic calibration of RGB-D systems is a well-established challenge in robotics and

computer vision. It involves estimating the rigid-body transformation between the RGB
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and depth components of an RGB-D sensor—a fundamental step for data fusion in multi-
sensor setups . Accurate calibration of these devices is especially crucial in fields such
as autonomous robotics f and computer vision applications like object recognition or
scene reconstruction , , where depth information enhances geometric understanding.
Consequently, developing robust and precise calibration methodologies for RGB-D cameras
becomes a significant research focus [64].

The calibration process typically starts with the identification of corresponding key points
in both the RGB and depth images. These key points, usually extracted from artificial
patterns, must then be associated across modalities, forming pairs that serve to compute
the spatial transformation between the two sensor coordinate systems. This transformation
allows projection of 3D points from one sensor’s frame into the other, and the accuracy of the
calibration is typically assessed by measuring the reprojection error between the estimated
and observed points.

Most state-of-the-art methods rely on visual calibration patterns to ensure that key
point detection and association are performed with high precision and reliability. Common
approaches use chessboards or Charuco markers, which are well-supported by off-the-shelf
detectors , , , . While such patterns are easily detectable in RGB images, they
often lack distinctive structure in the corresponding depth data, making direct matching
between modalities more difficult.

To address this, some researchers develop custom calibration targets specifically designed
to enhance feature detectability in depth maps. Park et al. , for instance, introduce a 3D
Charuco tower, which enables calibration of multiple RGB-D cameras with limited overlap by
providing features visible from different viewpoints. Chaochuan et al. design a tower-like
structure composed of circular markers, as shown in Fig. which are detected via Hough
transforms and refined using an adaptive cuckoo search algorithm. Their approach proves
especially suitable for setups with restricted fields of view, as commonly found in stationary

sensor arrangements.

Figure 2.4: Example of custom target .

In contrast to these target-based strategies, Horn et al. propose a targetless calibration

method based on dual optimisation. Their approach uses sensor ego-motion to match
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corresponding features across frames without relying on artificial patterns. The authors
distinguish between a fast optimiser, suitable for real-time applications, and a global optimiser,
designed for more accurate offline calibration. Their results, obtained on both simulated
data and the KITTI dataset [67], demonstrate translation errors of approximately 1 cm and
rotation errors near 1°.

Other methods aim to estimate both extrinsic and intrinsic parameters simultaneously.
Chen et al. [33] use heteroscedastic Gaussian process models to account for measurement
uncertainty and propose a calibration procedure based on fixed chessboards augmented with
fiducial markers. Their setup includes a motion capture system to track camera movement
around the target, and results show reprojection errors of approximately 2 pixels. Chaochuan
et al. |46] report reprojection errors of 2—4 pixels in their multi-camera setup, while Park et
al. [45] achieve reconstruction errors as low as 3.5 millimetres.

Despite advances in pattern detection and optimisation strategies, challenges remain.
Visual calibration patterns are often difficult to detect in cluttered or poorly lit environments,
and precise pattern placement may not always be feasible. Patternless approaches like that
of Horn et al. [66] offer more flexibility but may suffer from reduced accuracy or increased
computational requirements.

Ultimately, the choice of calibration method depends on the specific application context:
target-based methods tend to offer higher accuracy under controlled conditions, while targetless
approaches prove better suited for in situ deployment in dynamic or constrained environments.
The following section extends this discussion to hand-eye calibration, a crucial component in

robotic systems that involve moving sensors or manipulators.

2.2.5 Hand-Eye Calibration Methods

Hand-eye calibration constitutes another essential aspect of multi-sensor systems. Rooted
in the classical AX = X B formulation [68], [69], contemporary approaches include closed-
form and iterative solutions [70], [71]. Applications span robotic grasping, perception, and
navigation, as shown in the works of Fu et al. [72], Liang et al. [73], and Pan et al. [74].
Techniques often involve decoupling camera calibration from robotic kinematics to improve
system modularity [75], [76].

Two configurations dominate: eye-in-hand, which calibrates the transformation between
the camera and the end-effector; and eye-to-base, which relates the sensor to the robot base.
The AX = X B problem also extends to AX = ZB [77], allowing greater generalisation, as
illustrated in Fig.

While extensive work focuses on RGB sensors [78]—[80], increasing attention now turns
to RGB-D calibration. Jiang et al. [70] propose both closed-form and reprojection-based
methods, achieving rotation errors around 0.3 rad and translation errors near 3 mm in
real-world scenarios.

A significant contribution in this domain is the work by Pedrosa et al. [49], which generalises
hand—eye calibration by modelling it as a factor graph composed of atomic transformations.

This formulation enables the flexible combination of heterogeneous constraints (e.g., kinematic,
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Figure 2.5: Representation of the AX = X B hand-eye calibration philosophy.

visual, temporal) in both eye-in-hand and eye-to-base configurations, and demonstrates
improved convergence and robustness under real-world noise conditions.

Importantly, most RGB-D hand-eye calibration methods treat RGB and depth units as
inseparable, relying on factory calibration f. Some approaches decouple RGB and
depth alignment entirely from hand-eye estimation , . In contrast, our framework
allows independent calibration of RGB and depth components and supports simultaneous
calibration of mobile and fixed sensors from different modalities within a unified scheme.

While hand-eye calibration addresses dynamic scenarios involving mobile sensors, recent
research also explores broader trends such as automatic and targetless methods applicable

across various modalities.

2.2.6 Comparative Overview of Calibration Methods

Extrinsic calibration methods span a wide spectrum of sensor combinations, spatial
arrangements, and calibration targets. To provide a more integrative understanding of the
sensor calibration literature, Table presents a comparative overview of representative
extrinsic calibration methods across different sensor modalities. The table compiles key
information on the number and type of sensors involved, calibration targets, [EQV] overlap

requirements, and reported accuracy levels.
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Table 2.1: Comparison of selected extrinsic calibration methods based on number of sensors, modali-
ties, type of target, field of view (FoV) constraints, and accuracy.

Ref. # Sensors Modalities Target [FoV] Accuracy
(26] 2 RGB-RGB Checkerboard Overlap ~0.17 px
(27] 2 RGB-RGB Checkerboard /Targetless Overlap 0.1-10 em / <1°
(29] 3 RGB-RGB Checkerboard Overlap ~0.4 px

(31] 2 RGB-D Spheres Overlap <2.5 px

[32) 2 RGB-D Custom board Partial few cm

(33] 2 RGB-D Checkerboard Overlap <4 px

(34] n RGB-D Checkerboard Partial <15 px

[45) 4+ RGB-D Charuco tower Overlap 3.5 mm

(46| 4 RGB-D Circular markers Limited 3 mm

9] n RGB-IMU Checkerboard Overlap <2 mm / <0.5°
(35] 2 RGB-2D LiDAR Checkerboard plane Overlap 3%/ 1°

(37] 2 RGB-LiDAR Checkerboard Overlap ~4%

(38] 2 RGB-LiDAR Checkerboard Partial 12%/~1.5°
(39| 2 RGB-LiDAR Custom planar board Partial ~1 cm / 0.005 rad
[40! 2 RGB-LiDAR Checkerboard Overlap ~0.8 px

(41] 3 RGB-LiDAR Triangular target Overlap ~2 %

[42] 2 RGB-LiDAR Checkerboard Overlap 9 mm / ~7 px
(25] 2 RGB-LiDAR Targetless Partial ~4 cm [ ~ 0.5°
[47] 2 RGB-LiDAR Mirror Non-overlapping 4% | <3°
[51) 2 RGB-LiDAR Checkerboard/Object Overlap ~1 cm/ ~ 0.1 rad
(54] 2 RGB-LiDAR Targetless Overlap ~T7cm/ ~ 2.25°
(57) 2 RGB-LiDAR Targetless Overlap 0.75 m / 15°
(55] 2 RGB-LiDAR Targetless Overlap 2.43 cm / 0.25°
(56 2 RGB-LiDAR Targetless Overlap ~7 cm/ ~ 0.23°
[52] 2 RGB-LiDAR Costum target Overlap ~5 mm / <1°
(50] 3 RGB-LiDAR Checkerboard Partial 0.9-6 px

(66] 2 RGB-LiDAR-RGB-D Targetless Partial ~lecm /1°
(81] 3 RGB-IR-LiDAR Checkerboard/Costum Target Overlap NA

(82] 5 RGB-2D LiDAR-3D LiDAR Checkerboard Partial 0.5-6 px

Traditional RGB-RGB calibration methods form the backbone of early extrinsic calibration
efforts, with techniques like those of Su et al. [26], Ling et al. [27], and Dinh et al. [29] relying
on checkerboard targets in overlapping fields of view. These methods consistently report
sub-pixel accuracy, confirming their maturity and reliability in structured setups. However,
they remain intrinsically limited to scenarios with full visibility between cameras and are not
easily extensible to larger sensor arrays or heterogeneous modalities.

RGB-D calibration introduces further challenges due to the noise characteristics and lower
resolution of depth sensing. Works such as Liu et al. [31], Basso et al. [32], and Kwon et al. [34]
explore diverse target designs including spheres, checkerboards, and planar patterns, often
with partial field-of-view overlap. These methods typically achieve millimetre- to pixel-level
accuracy, with Park et al. [45] demonstrating a notable improvement through a multi-layered
Charuco tower, reaching sub-4 mm precision. Similarly, Chaochuan et al. [46] utilise circular
markers and metaheuristic optimisation to deal with limited [FoVlscenarios. While such designs
improve flexibility, they still depend on carefully engineered targets and spatial arrangements.

The calibration of RGBILIDAR] systems adds another layer of complexity due to the
sparse and asynchronous nature of [LiDAR] data. A large body of work in this domain, such
as Vasconcelos et al. [35], Guindel et al. [39], Wang et al. [40], and Verma et al. [42], proposes
target-based strategies using planar boards, checkerboards, or triangular panels. Reported

accuracy generally ranges between 1-2 cm and up to 1.5° rotation error, with variations
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depending on point cloud density, target geometry, and calibration metric. Oliveira et al. [82]
expand this line of work by proposing a practical calibration method involving both 2D and
3D [LIDARE in addition to RGB sensors. Their system is validated in real-world agricultural
settings, highlighting the method’s robustness across multi-modal configurations with partial
field-of-view overlap. Pinto de Aguiar et al. [50] present a method for calibrating fixed RGB
and [[IDARI] sensors using a checkerboard observed from multiple static positions, achieving
reprojection errors between 0.9 and 6 pixels.

In contrast, several recent works shift away from reliance on calibration targets. Targetless
or minimally structured methods, such as those by Yaqing et al. [25], Zhu et al. [54], Lin
et al. [57], Wang et al. [55], and Cattaneo et al. [56], introduce techniques based on edge
alignment, surface geometry, or mesh constraints. These methods prove especially useful in
unstructured or cluttered environments, although their accuracy is often lower, with translation
errors ranging from 2 to 7 cm and rotation errors up to 2.5°. Still, their independence from
specialised markers and greater scalability make them attractive for dynamic or large-scale
deployments.

Calibration approaches in highly multi-modal setups, such as those incorporating IMUs [9],
thermal sensors [81], or hybrid RGB{LIDARIRGB-D arrangements [66], highlight the growing
importance of integrated perception. These configurations are common in collaborative cells,
where different sensing technologies cover complementary fields of view and operate under
distinct measurement models. Furgale et al. |[9] present an optimisation-based pipeline that
jointly estimates spatial and temporal calibration parameters, achieving high precision across
RGB-IMU combinations. Horn et al. |[66] use ego-motion as a supervisory signal, bypassing
the need for targets entirely and reporting errors below 1 cm and 1°.

Special mention should be made of efforts that address non-overlapping field-of-view
configurations, a critical issue in collaborative robotic settings. Raposo et al. [47] offer a
mirror-based method to simulate shared [FoV] across fixed RGB-D and [[iDAR] units, while Kim
et al. [52] propose a custom target design embedded within SLAM optimisation routines to
calibrate RGBILIDARI pairs with high accuracy (<5 mm). These solutions illustrate creative
ways to deal with occlusions and visibility gaps that are typical in industrial workcells.

Across the surveyed literature, accuracy remains highly dependent on the modality and
methodology used. Target-based RGB-RGB and RGB-D setups often reach sub-pixel or
millimetre-level performance. [[IDAR}based methods typically yield translational errors
between 1-3 cm and angular errors around 0.5-1.5°, although some approaches push these
limits further under controlled conditions. Targetless methods generally sacrifice some precision
in favour of flexibility, with higher error margins but greater applicability in unconstrained or
online scenarios.

This comparative overview underscores both the diversity and the fragmentation of the
calibration landscape. Classical methods provide excellent accuracy in controlled conditions
but lack scalability. Learning-based and targetless techniques offer adaptability and automation
but are not yet as precise or generalisable. The growing heterogeneity of sensor configurations,

especially in collaborative cells, calls for unified frameworks that can flexibly accommodate
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varying [EoVk, sensor types, and spatial constraints without sacrificing accuracy or requiring

extensive manual intervention.

2.2.7 Critical Analysis

The literature on extrinsic calibration evolves considerably in response to the increasing
complexity of multi-sensor robotic systems, particularly within collaborative environments.
Early efforts, such as Zhang’s classic checkerboard-based method for stereo calibration [8], pave
the way for highly accurate, pairwise calibration techniques under controlled and overlapping
fields of view. These methods, including RGB-RGB approaches like those by Su et al. [26]
and Ling and Shen [27], continue to offer reliable results in structured environments but scale
poorly as sensor networks grow or diversify.

Recent research improves calibration accuracy and robustness through enhanced visual
targets and detection pipelines. For example, Chaochuan et al. [46] propose a tower-based
circular marker setup for constrained [FoVk, while Kim et al. [52] introduce an optimised
calibration procedure using circular features and constrained motion paths. The work of
Park et al. [45] further demonstrates how multi-camera RGB-D calibration can achieve
sub-millimetre accuracy through iterative refinement with a 3D Charuco tower. Meanwhile,
Zhang et al. [65], Chen et al. [83], and Garrido-Jurado et al. [53] significantly enhance the
reliability of marker detection under adverse conditions. These advances increase the usability
of target-based calibration in industrial environments, but they still require visual access to
shared patterns, spatial proximity, and sometimes manual setup.

In contrast, recent developments in targetless or semi-structured calibration methods seek
to improve flexibility. Horn et al. [66] propose a dual-optimisation strategy that leverages
sensor egomotion rather than fixed targets, while Raposo et al. [47] and Hua et al. [51] use
mirrored surfaces or scene edges to align sensors with disjoint views. Similarly, motion and
mesh-based methods [54]-[56] offer alignment based on dynamic feature correspondences or
ray-traced mesh models. These techniques prove particularly relevant for non-overlapping
and safety-critical configurations, such as those found in collaborative robotic cells. However,
they introduce new trade-offs: greater computational burden, sensitivity to scene geometry or
motion, and less predictable accuracy under real-world conditions.

Efforts to calibrate multi-sensor systems with RGB, depth, and [LiDAR] data also progress.
Works by Vasconcelos et al. [35] and Rehder et al. [36] use planar targets and plane-fitting
for RGB{LIDAR] alignment, while Zhou et al. [38] exploit edge correspondences to reduce
dependency on patterns. Nevertheless, most approaches still remain pairwise and assume
overlap between sensors. When scaling to networks with multiple static and mobile sensors,
including IMUs or thermal cameras, issues of error propagation, calibration path dependency,
and toolchain heterogeneity emerge, limiting applicability in complex setups.

Another persistent gap concerns the calibration of sensors mounted on robotic arms (eye-in-
hand) in parallel with fixed infrastructure sensors (eye-to-base). While some methods address
hand-eye calibration specifically [70], [71], and others support static multi-view alignment,

few frameworks prove capable of simultaneously calibrating heterogeneous sensors in mixed
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configurations.

Spatiotemporal synchronisation, though not always treated as part of extrinsic calibration,
plays a crucial role in systems with asynchronous sampling (e.g., RGB,[LIDAR] IMU). Kalibr [9]
and its extensions [36] enable joint optimisation of spatial and temporal offsets, but assume
motion and may not suit fixed sensors. Liu et al. [58] go further with a modular calibration
pipeline that addresses both synchronisation and alignment in a generalisable way, yet still fall
short in real-time static deployments or setups requiring joint hand-eye and static calibration.

From a deployment perspective, the lack of general-purpose, reproducible toolkits remains
a barrier. While ROS-based calibration packages exist, they are often limited to specific
sensor pairs, require controlled motion sequences, or are cumbersome to configure. This
is compounded by the uneven availability of benchmarking datasets. KITTI [67], YUTO
MMS [84], and similar driving-focused benchmarks provide strong baselines for mobile robotic
calibration, but there are few datasets that reflect the spatial constraints, occlusions, and
static configurations of collaborative industrial cells.

A further limitation lies in the scarcity of calibration methods tailored to the real-
world constraints of collaborative cells. Unlike mobile platforms or controlled environments,
collaborative workspaces often require calibration of fixed, non-overlapping, and heterogeneous
sensors, without disrupting the workspace or relying on motion. Few published approaches
explicitly support these constraints while maintaining sub-centimetre accuracy. Notable
exceptions include the [ATOM] framework [48], [50], [80], which enables the calibration of static
RGB and [LiDATRI sensors through a modular, sequential strategy.

Learning-based calibration is an emerging but still maturing area. Deep learning models
like those proposed by Yaqing and Huaming [25] demonstrate strong potential in generalisation
and robustness, especially under occlusion or partial visibility. However, these approaches
are not yet integrated into standard calibration pipelines and often require pretraining on
synthetic data or specific scene assumptions.

In this context, the contribution of this thesis is both novel and operationally relevant.
It proposes a multi-modal and multi-sensor calibration framework capable of estimating
the extrinsic transformations between any number of RGB, depth, and [LiDARI sensors,
whether fixed or mounted on a robotic manipulator, with a single calibration target. The
method supports mixed configurations (e.g., static infrastructure and mobile arms), partial
or non-overlapping fields of view, and does not rely on predefined motion paths or elaborate
marker setups. By integrating hand-eye calibration into a unified, scalable pipeline, this
approach bridges a critical gap between the precision of traditional calibration and the
flexibility demanded by real-world collaborative robotics. In doing so, it contributes to the
development of perceptual infrastructures that are accurate, adaptable, and robust under

industrial constraints.

2.3 3D HuMAN POSE ESTIMATION FROM MULTI-CAMERA SYSTEMS

Human pose estimation refers to the task of inferring the configuration of the human

body from sensor data. A distinction is typically made between two-dimensional (2D) and
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three-dimensional (3D) pose estimation. While 2D estimation localises joints within the
image plane, 3D estimation seeks to reconstruct the spatial configuration of body joints in
world coordinates. The latter proves inherently more challenging due to depth ambiguities,
occlusions, and the need for accurate geometric modelling.

In collaborative robotics and Human-Robot Interaction (HRII), 3D pose estimation is critical
for ensuring safety, predicting human trajectories, and enabling responsive, context-aware
behaviours. By accurately localising body joints, robots can avoid collisions, respect safety
zones, and adapt their actions to human co-workers in shared environments. These applications

demand robustness under occlusions, temporal consistency, and real-time performance.

2.3.1 RGB Multi-View 3D Human Pose Estimation Methods

Multi-camera RGB systems allow for redundant visual information across multiple view-
points, facilitating robust 3D human pose estimation. Geometry-based triangulation is a
classical approach that reconstructs 3D joint positions from 2D detections using calibrated
camera parameters. While conceptually simple, it is highly sensitive to detection noise and
missing joints.

To address these limitations, volumetric methods aggregate multi-view 2D detections into
3D heatmaps or voxel occupancy grids. These probabilistic fusion techniques, as explored
by Zhao et al. [85], improve robustness in occluded scenarios but require large memory and
computational resources.

A common option is to represent the human body through a skeleton of keypoints, typically
capturing 14 to 25 major joints. This skeleton-based approach offers a simplified, lightweight
representation that can be estimated efficiently and is often sufficient for applications such as
gesture recognition, trajectory prediction, or real-time safety monitoring in robotics. Due to
their reduced dimensionality and simpler structure, skeleton models are well suited to tasks
where computational efficiency and fast inference are prioritised over anatomical detail.

In contrast, parametric body models such as SMPL [86] and SMPL-X [87] provide a more
expressive and anatomically grounded mesh representation of the body surface. These models
incorporate shape and pose parameters to generate full-body 3D meshes and, in the case
of SMPL-X, also include articulated hands and facial expressions. While offering a richer
depiction of human posture and emotion, such models require more processing time, additional
parameters, and often tighter alignment with input data. The difference in representational
complexity is illustrated in Figure [2.6] where the compactness of the skeleton-based model
contrasts with the dense surface mesh of SMPL and SMPL-X. Several approaches fit SMPL to
2D keypoints [88], silhouettes [89], or contact constraints [90], using either optimisation [91]
or learned regressors [92].

For this reason, skeleton-based approaches remain dominant in real-time systems, especially
in human-robot interaction contexts, where fast decision-making is required and full mesh
reconstruction is often unnecessary. On the other hand, SMPL-based representations are
preferred in applications involving body modelling, biomechanics, or avatar generation, where

surface accuracy and realism are critical.
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Figure 2.6: Comparison of pose representations. From left to right: RGB image, major joints,
skeleton, SMPL, SMPL-X. Skeleton-based models are compact and computationally
efficient, while SMPL(-X) models offer high fidelity and expressive detail at a higher
computational cost. Image adapted from Pavlakos et al. [87].

Learning-based and transformer-driven architectures now dominate the field. Works such
as PoseFormer [93] and PoseFormerV2 [94] model temporal dependencies across frames using
attention or frequency-domain processing. Other architectures, like GLA-GCN [95] and
MotionAGFormer [96], combine graph reasoning with temporal modelling to enhance spatial
fidelity and temporal consistency. Self-supervised methods like EpipolarPose [97] and Bouazizi
et al. [98] avoid the need for paired 2D-3D annotations by exploiting multi-view consistency.
Meanwhile, diffusion-based methods like DiffuPose [99] and ZeDO [100| represent a shift
toward generative pose estimation.

Evaluation typically relies on quantitative metrics such as Mean Per Joint Position
Error (MPJPE]) and its aligned variant, Procrustes-aligned (PIMPIPE).
measures the average Euclidean distance (in millimetres) between predicted and ground truth
joint positions across all frames and joints, calculated after aligning the skeletons by a rigid
root translation. It is widely used in the Human3.6M benchmark [101], where it becomes the
de facto standard for supervised pose estimation.

However, MPJPEI is sensitive to scale, orientation, and body size, and it does not account
for global pose shifts or camera misalignment. To address this, PAMPJPEl applies a rigid-body
Procrustes alignment before computing the joint distances, effectively removing errors due to
global translation, rotation, and scale. This metric captures the structural correctness of the
predicted pose independent of absolute position, making it particularly useful for comparing
shape-preserving methods such as SMPL-based models.

Despite their widespread use, both and PAMPJPEl have limitations in downstream
robotic applications, where temporal stability, semantic consistency (e.g., correct left-right

labeling), and response latency may be more critical than small positional deviations. As
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such, researchers have proposed complementary metrics like Percentage of Correct Keypoints
(BDPCK]) and Area Under the Curve (AUC), especially in mesh-based estimation. Yet, no
consensus exists on standard metrics for real-world deployment, particularly in safety-critical
or interactive scenarios.

A comparative overview of selected 3D pose estimation methods is presented in Table
highlighting their type, core innovations, performance in terms of [MPJPE] and common
evaluation datasets. This table provides a useful reference point for understanding trade-offs
across model families.

Table 2.2: Comparison of selected 3D human pose estimation methods based on architecture type,
methodological approach, and reported MPJPE in millimetres on benchmark datasets:

Human3.6M (H36M) [101], MPI-INF-3DHP (3DPH) [10], and HumanEva (HE) [102].
MPJPE values are rounded to the nearest millimetre.

MPJPE (mm)

Method Type Key Characteristics H36M 3DPH HE
ZeDO [100] Diffusion + optimisation Zero-shot inference from 2D keypoints 42 55 -
SMPLify |[88] SMPL-based Regression from 2D keypoints to mesh 69 - 62
MotionAGFormer (96| Transformer-GCN Lightweight spatio-temporal fusion 17 - 16
GLA-GCN |95 GCN + attention Local joint refinement with global reasoning 21 28 9
EpipolarPose |97 Self-supervised Triangulation-based training without GT labels 61 109 -
Martinez et al. [103| Lifting (MLP) Simple 2D-t0-3D baseline, no temporal modelling 63 - 25
Pavllo et al. [104] Temporal CNN Semi-supervised training with back-projection 47 - -
DiffuPose |99, Diffusion Denoising diffusion model from monocular RGB 49 - -
Mono-3DHP |10] CNN regression Monocular in-the-wild pose using improved supervision 55 41 -
CameraPose [105)] Weak supervision Lifting from 2D using weak supervision with camera priors 39 79 -
HoloPose [106] Holistic reconstruction End-to-end model for mesh and pose from monocular RGB 60 - -
MotionBERT [107]  Transformer Unified spatio-temporal representation learning 38 - -
Bouazizi et al. [108] Temporal + pseudo-labels Temporal refinement using pseudo-3D labels from 2D detections 40 93 -
Bouazizi et al. |98] Self-supervised Self-supervised 3D pose using multi-view geometry 62 - 59
PoseFormerV2 |94 Transformer Frequency-domain transformer using DCT on 2D keypoints 45 28

The methods summarised in Table illustrate the diversity of architectures and train-
ing strategies employed in 3D human pose estimation. Transformer-based models such as
PoseFormerV2 and MotionBERT achieve state-of-the-art accuracy on Human3.6M [101]
while maintaining temporal consistency and robustness in longer sequences. Diffusion-based
methods like ZeDO and DiffuPose stand out for their ability to generalise to in-the-wild
or cross-domain settings without requiring explicit 3D supervision. SMPL-based regressors
(e.g., SMPLify) provide detailed mesh outputs but depend heavily on accurate 2D keypoints
and are less robust to occlusions. Self-supervised models like EpipolarPose and CameraPose
reduce dependence on annotated 3D data, offering promising solutions for deployment in
unconstrained environments. Hybrid models that combine GCNs and transformers, such as
GLA-GCN and MotionAGFormer, provide a good trade-off between local joint reasoning
and global scene understanding. Overall, the field moves toward architectures that integrate

multi-view, temporal, and semantic information in an efficient and scalable manner.

2.3.2 Multi-modal 3D Human Pose Estimation Methods

Some authors in 3D human pose estimation turn toward multi-modal architectures to
overcome the limitations of single-sensor systems. In contrast to monocular or RGB-only

methods, multi-modal approaches aim to exploit complementary strengths of sensors such as
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[LiDAR] RGB, depth, IMU, radar, and thermal to improve pose reconstruction under challeng-
ing conditions—occlusion, sparse observations, adverse lighting, and cluttered environments.
These approaches prove particularly valuable in collaborative robotic systems and autonomous
platforms, where perception must be robust, real-time, and adaptable to diverse operational
contexts.

A key motivation for multi-modal estimation is the inherent sparsity and noise of [LIDARI
point clouds, which make accurate pose recovery difficult when relying solely on geometric
priors. Early [LIDARlonly systems (e.g., LIDARCap [109]) introduce dense temporal mod-
elling and SMPL optimisation to recover human motion, but at the cost of complexity and
limited scalability. Recent work like DAPT (Density-Aware Pose Transformer) [110] proposes
an optimisation-free method that achieves robust single-frame [LiDAR}based estimation by
pre-training on a synthetically augmented dataset. This method integrates joint anchor
representations and multi-density exchange modules, achieving state-of-the-art performance
on benchmarks like Waymo [111] and SLOPERAD [112].

While [LiDARLlonly approaches become increasingly viable, many state-of-the-art systems
pursue multi-modal fusion to boost performance, especially in outdoor or cluttered indoor
environments. For instance, HPERL [113] integrates RGB and [LIDAR] data to extract comple-
mentary semantic and geometric features. Similarly, LPFormer [114] employs a transformer
architecture with multi-task learning over [LiDARI] data, jointly performing segmentation and
pose estimation. The inclusion of semantic cues improves disambiguation in dense scenes and
offers improved generalisation across domains.

A growing number of works address weakly supervised multi-modal learning, particularly
in automotive and large-scale outdoor scenarios. Bauer et al. [115] and Zheng et al. [116]
propose frameworks that learn 3D poses from sparse [LiDAR] and RGB images, guided by
2D annotations. These systems benefit from the geometric constraints of [LIDAR] and the
texture and semantic richness of RGB images while minimising the need for expensive 3D
ground truth. Similarly, HUM3DIL [117] introduces a semi-supervised fusion approach that
integrates RGB and [LIDAR] with 2D annotations, tailored for autonomous driving contexts.
These methods report competitive accuracy with limited supervision, making them well suited
for industrial domains where fully annotated datasets are rare.

Beyond RGB and [LIDAR] additional modalities emerge. LidPose [118] demonstrates that
even sparse [LIDAR] scans can yield reliable 3D pose estimations when the scanning pattern is
optimised, using circular scanning and density-aware training. Meanwhile, SPiKE [119] exploits
sequential point cloud frames to perform efficient spatio-temporal inference, underlining the
role of motion continuity even without image data.

Some authors combine other types of modalities. The mRI dataset [120] integrates
mmWave radar, RGB-D, and inertial sensors, providing a challenging testbed for robust
pose estimation under occlusion and motion. It serves as the basis for cross-modal learning,
particularly relevant for wearable applications and safety-critical collaborative robotics. These
systems excel in scenes where line-of-sight is frequently blocked—e.g., around heavy machinery

or behind obstacles—making them highly suitable for safety monitoring and real-time decision
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support in manufacturing environments.

Multi-modal pose estimation methods typically rely on early or late fusion strategies,
depending on the task and sensor alignment. Early fusion combines raw data streams, often
requiring tight spatiotemporal synchronisation and calibration. Late fusion operates on
intermediate representations (e.g., keypoints, feature maps), offering greater flexibility and
robustness but often requiring careful domain adaptation between modalities.

Despite their promise, multi-modal approaches pose challenges in calibration, synchronisa-
tion, and deployment scalability. Achieving real-time performance while fusing heterogeneous
data streams from distributed sensors remains non-trivial. Nonetheless, their potential to
enable reliable, occlusion-robust, and generalisable human pose estimation positions them as

a cornerstone for the next generation of collaborative robotic systems.

2.3.3 Datasets and Benchmarks

Benchmark datasets are instrumental in advancing research in 3D [HPE] offering standard-
ised platforms for training, validation, and comparison across models and tasks. Most widely
used datasets are designed for general-purpose human activity understanding and are collected
under controlled laboratory conditions. While these datasets drive significant methodological
progress, they present certain limitations when applied to industrial and collaborative robotic
contexts, particularly regarding sensor configurations, environmental variability, and occlusion
patterns.

Human3.6M [101] remains the most widely adopted dataset for 3D [HPE] evaluation. It
includes over 3.6 million 3D pose annotations derived from marker-based motion capture,
paired with synchronized video from four calibrated RGB cameras. Subjects perform a fixed
set of actions in a studio environment, offering consistent ground truth but limited scene
diversity. It supports both supervised and weakly supervised learning setups, and it is the de
facto benchmark for methods trained in indoor, single-person, full-body scenarios.

MPI-INF-3DHP [10] is introduced to address some limitations of Human3.6M, notably
the lack of diversity in clothing, viewpoints, and environments. It includes both indoor
and outdoor sequences, with 3D annotations acquired from markerless systems and manual
correction. The dataset supports generalisation studies and is especially useful for assessing
model robustness in semi-constrained environments with varied lighting and attire.

CMU Panoptic Studio [121] is a large-scale multi-person dataset featuring over 500
synchronised RGB cameras arranged spherically around a central capture area. It enables
high-resolution tracking of group interactions and complex occlusion scenarios, making it
a valuable resource for multi-view learning and multi-person pose estimation. However, its
scale and complexity limit its use to a smaller set of research groups with high computational
resources.

HumanEva [102] is among the first datasets to provide synchronized video and 3D pose
data, enabling probabilistic and optimisation-based evaluation in early 3D [HPE] research.
While smaller in scale and resolution compared to newer datasets, it remains relevant for

benchmarking monocular and stereo reconstruction algorithms due to its simplicity and high
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annotation fidelity.

3DPW (3D Poses in the Wild) [122] represents a significant step toward in-the-wild
evaluation, capturing natural human motion in outdoor settings using a portable motion
capture setup (IMUs + video). It provides 3D mesh annotations aligned with the SMPL
model and supports evaluation of methods in unconstrained environments. However, its
annotations are less precise than optical marker-based setups and it remains underused in
industrial robotics research.

Despite their contributions, most of these datasets fall short of reflecting the complexities
of industrial or collaborative robotic environments. Specifically, they rarely incorporate
environmental occlusion, sensor noise, reflective surfaces, non-standard camera placements,
or partial observability, conditions commonly found in manufacturing cells or [HRIl scenarios.
Furthermore, calibration data is often limited or not aligned with the sensor setups used in
industrial settings.

Ultimately, there is a pressing need for more representative datasets that align with the
specific spatial, perceptual, and temporal constraints of collaborative robotics. Such datasets
would ideally feature non-overlapping camera networks, dynamic lighting, industrial artefacts,
real operator behaviour, and accurate 3D ground truth under occlusion. The lack of such
resources remains a bottleneck in the development of deployable human pose estimation

solutions for real-world collaborative systems.

2.3.4 Applications

3D human pose estimation evolves into a core capability for a wide variety of systems
requiring real-time, spatial understanding of human motion. Its capacity to accurately
reconstruct joint locations in three-dimensional space supports an expanding set of applications
across fields such as robotics, autonomous systems, healthcare, and sports. While much of
the research focuses on improving the precision and generalisation of pose estimation models,
their practical utility is increasingly demonstrated in domain-specific deployments.

In clinical and rehabilitative contexts, 3D human pose estimation gains traction as a
tool for non-invasive assessment of musculoskeletal health. Koleini et al. [123] introduce
BioPose, a monocular video-based method that integrates biomechanical constraints into a
pose estimation pipeline. By enforcing anatomical plausibility and joint angle limits, BioPose
enables the reconstruction of physically consistent motions suitable for use in musculoskeletal
assessment and virtual rehabilitation. The system achieves accurate reconstruction of gait
and therapeutic exercises from standard camera input, making it well-suited for at-home or
outpatient clinical use where marker-based motion capture is impractical.

Expanding into applied biotechnology, Ge and Mariano [124] propose a multi-feature
fusion framework that leverages 3D HPE for wearable diagnostics and human performance
monitoring. Their approach integrates skeletal pose estimation with physiological signal
analysis in commercial health platforms, facilitating applications such as real-time posture
tracking, fatigue monitoring, and behavioural biometrics. This integration exemplifies a

growing convergence between human pose estimation and digital health technologies, where
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accurate motion analysis becomes a proxy for broader physical or cognitive state inference.

In the sports domain, 3D HPE emerges as a central tool for performance assessment, skill
acquisition, and injury prevention. Park et al. [125] develop GolfPoseNet, a pose estimation
network specialised for the analysis of golf swings. By tailoring the architecture to domain-
specific kinematics, the system reconstructs the full-body motion of athletes in outdoor or
indoor settings, enabling frame-by-frame feedback for coaches and players. Similarly, Liu et
al. [126] introduce STIGANet, a low-latency pose estimation model that fuses dynamic graph
convolutional networks with attention mechanisms. Designed for deployment in high-speed
sports scenarios, STIGANet supports real-time tracking and action segmentation across diverse
motion types.

Zhang et al. |[127| propose STAPFormer, a transformer-based architecture aimed at sports
and health applications where biomechanical accuracy is critical. It integrates temporal
context with skeletal dynamics to enhance anatomical consistency and temporal stability in
pose sequences. Also addressing posture correction, Yuan and Zhou [128] present GTA-Net, an
ToT-integrated system for adolescent sports training. Their model enables real-time assessment
of spinal alignment and postural deviations, with applications in injury prevention and youth
athlete development. These systems reflect a broader trend toward specialised 3D HPE models
that prioritise domain knowledge, real-time responsiveness, and usability in non-laboratory
settings.

3D HPE also becomes increasingly relevant in perception systems for autonomous vehicles.
In complex traffic scenarios, understanding the body posture and motion intent of pedestri-
ans and cyclists proves vital for safe navigation and planning. The HUM3DIL framework
introduced by Zanfir et al. [117] addresses this challenge by employing a semi-supervised,
multi-modal pipeline that fuses stereo, [LIDAR], and image data to estimate pedestrian pose
in diverse street scenes. The system learns from both labelled and unlabelled data, enabling
robust generalisation under variable lighting, occlusion, and movement dynamics.

In a related line of work, Bauer et al. [115] present a weakly supervised multi-modal
pose estimation framework for autonomous driving, combining RGB and [LiDAR] inputs with
2D annotations. Their system operates in urban environments, providing accurate 3D pose
estimates for external human actors such as pedestrians, scooter riders, and construction
workers. These applications demonstrate how 3D HPE contributes not only to safety and
intent prediction but also to broader goals of human-aware autonomy.

Within the robotics domain, 3D human pose estimation serves as a perceptual foundation
for enabling physical and semantic interaction between robots and humans in shared envi-
ronments. In collaborative manufacturing cells, pose estimation is used to monitor human
proximity, predict motion intent, and adapt robot trajectories in real time, allowing for the
enforcement of dynamic safety zones and fluid task-sharing. For example, Peppas et al. [129]
integrate a multi-modal 3D HPE system into a collaborative robotic setup, enabling real-time
ergonomic analysis and adaptive robot responses to worker motion. Similarly, Fiirst et al. [113]
demonstrate the effectiveness of combining [LIDAR] and RGB input to estimate human pose

for safety-aware robotic co-working.
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Beyond reactive safety measures, 3D HPE is increasingly used for semantic interaction
and intent recognition. Systems capable of detecting hand gestures, tool-use postures, or
whole-body motion can anticipate the user’s next action and proactively adjust the robot’s
behaviour. This is further explored by Baptista et al. [11], who incorporate pose-based
gesture recognition into a ROS-based collaborative cell to improve fluency in human-robot
cooperation. In more advanced learning-from-demonstration frameworks, pose estimation
enables the capture of human motion trajectories without markers or wearable sensors, which
can then be translated into executable robotic actions—a paradigm increasingly employed in
task teaching and motion programming.

As robotic systems continue to evolve toward greater autonomy and shared agency, the
integration of robust, real-time 3D pose estimation becomes indispensable. Not only does it
enhance physical safety and task efficiency, but it also contributes to the robot’s ability to
understand, anticipate, and interact meaningfully with human collaborators, aligning with
broader objectives in Industry 5.0 and human-centric automation [15], [130].

Taken together, the reviewed applications demonstrate that 3D human pose estimation
moves beyond the confines of computer vision research and into real-world systems that
require reliable, real-time human motion understanding. Whether tracking gait in clinical
rehabilitation, guiding swing mechanics in sports, enabling pedestrian awareness in autonomous
driving, or supporting seamless interaction in collaborative robotics, 3D HPE now plays a
vital role in human-centred system design. These advances are driven not only by algorithmic
improvements but also by closer integration with domain-specific constraints and goals. As the
next chapters of this thesis will show, these capabilities are essential in developing perceptually
aware, safety-compliant, and semantically rich robotic systems designed for industrial and

collaborative environments.

2.3.5 Critical Analysis

The field of 3D human pose estimation makes substantial strides, yet a number of
conceptual, methodological, and practical challenges continue to constrain its deployment in
real-world scenarios, particularly in robotics and human-machine collaboration.

One of the most persistent limitations across existing methods is their reliance on precise
camera calibration. Multi-view triangulation, volumetric fusion, and SMPL-based fitting
typically assume known intrinsics and extrinsics, which is seldom the case in ad hoc or
dynamic camera arrangements. Even methods trained on large-scale benchmark datasets
such as Human3.6M [101] or MPI-INF-3DHP [10] often lack robustness to shifts in viewpoint
geometry, sensor fidelity, or background complexity. This poses a barrier to their use in
non-laboratory settings, such as industrial floors, warehouses, or mobile robotic platforms,
where scene parameters may change frequently or remain partially unknown.

Generalisation to out-of-distribution contexts remains a significant obstacle, especially
for learning-based and monocular approaches. While transformer-based architectures (e.g.,
PoseFormerV2 [94]) and diffusion models (e.g., ZeDO [100]) show promising generalisation

across datasets, they are still predominantly evaluated in curated environments. Models
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often degrade when confronted with unseen lighting, occlusions, clothing variation, or motion
profiles not represented in the training data. This indicates that current benchmarks may
insufficiently reflect the variance encountered in operational settings, and that generalisation
remains more an aspiration than a standard feature of state-of-the-art models.

Optimisation-based methods, particularly those relying on parametric models like
SMPL [88], [89], offer interpretable and anatomically grounded outputs. They are well
suited to applications requiring detailed mesh representations or physical simulation. However,
these approaches are sensitive to 2D detection quality and often require extensive computation.
Moreover, iterative fitting procedures may fail to converge under occlusion or when joints are
misdetected, which is common in cluttered environments.

Temporal models such as those proposed by Pavllo et al. [104] or MotionAGFormer [96]
introduce valuable tools for smoothing pose estimates and leveraging continuity in movement.
However, these gains in temporal coherence frequently come at the cost of higher latency or
dependence on future frames, making them less suitable for causal inference in reactive robotic
systems. Moreover, while many models implicitly capture motion regularities, they often lack
mechanisms for reasoning about human intent, interaction contexts, or safety-critical states.

Self-supervised learning [97], [98] and weakly supervised techniques |[105] mark a critical step
toward reducing data dependence and improving adaptability. These approaches are especially
relevant for scenarios where collecting 3D ground truth is impractical. However, current
self-supervised models tend to rely on restrictive assumptions (e.g., multiview consistency,
geometric priors) and are not yet as competitive in accuracy as fully supervised counterparts.

The emergence of multi-modal approaches offers a promising direction for increasing
robustness and contextual awareness. Systems that fuse RGB, [LIDAR] radar, IMU, and depth
data, such as DAPT [110], LPFormer [114], and HUM3DIL [117], demonstrate improved
resilience to occlusion and sensor degradation. However, these pipelines face non-trivial
integration challenges, including sensor synchronisation, calibration, and computational load.
The trade-offs between early and late fusion remain an open question, and the deployment of
such architectures in real-time collaborative robotics is still limited by hardware constraints
and processing requirements.

A further point of concern lies in the fragmented nature of evaluation protocols. While
MPJPE remains the most common metric, it does not account for semantic plausibility,
temporal stability, or real-world usability. Metrics such as 3DPCK, AUC, and PVE (Per
Vertex Error) offer partial alternatives, but no consensus has emerged on how to benchmark
robustness under occlusion, generalisation to unseen domains, or resilience to calibration noise.
Without unified standards, it becomes difficult to assess the practical suitability of competing
approaches for safety-critical applications.

From an application perspective, recent research begins to address more specific and func-
tionally relevant challenges. In healthcare, systems like BioPose [123] incorporate anatomical
priors to produce physically meaningful reconstructions, making them more suitable for gait
analysis or rehabilitation. In sports, task-specific models such as GolfPoseNet [125] or STI-

GANet [126] demonstrate the value of domain adaptation, where training objectives are closely
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aligned with target use cases. Similarly, autonomous driving platforms like those developed
by Bauer et al. [115] and Zanfir et al. |[117] show how weak supervision and multi-modal
integration can improve safety in outdoor, cluttered environments. However, the transfer of
these insights into collaborative robotics remains uneven. While some systems, such as those
proposed by Peppas et al. [129] and Fiirst et al. [113], demonstrate effective integration of
pose data for human-aware control, many research contributions still remain detached from
robot execution pipelines or ergonomic assessment tools.

Additionally, the dataset landscape is not yet aligned with real-world demands. While
Human3.6M [101] and MPI-INF-3DHP [10] remain standard references, they do not represent
the spatial, temporal, and contextual variability found in industrial or collaborative envi-
ronments. Most datasets lack occlusion, variable lighting, or realistic sensor configurations,
and few provide synchronised multi-modal data or labelled interaction scenarios. As a result,
the evaluation of systems intended for deployment in collaborative robotic workcells, digital
health, or mobile autonomy remains fragmentary.

Against this backdrop, our work proposes a methodologically grounded approach to
3D human pose estimation that explicitly addresses some of the most pressing constraints
for deployment in collaborative robotics. By operating in a multi-camera RGB setup, we
demonstrate that it is possible to achieve robust pose estimation in dynamic, semi-structured
environments. Our method integrates a modular calibration procedure and uncertainty-
aware triangulation pipeline, implemented in ROS, that supports real-time performance while
tolerating minor camera misalignment. In contrast to models reliant on tightly controlled
parameters or future frame dependencies, our approach is designed for causal inference and
continuous operation in open-ended human-machine interaction scenarios.

This effort speaks directly to ongoing concerns about generalisability, calibration depen-
dency, and practical integration. It also contributes to the growing need for systems that can
operate beyond idealised conditions and benchmark environments. Looking ahead, we argue
that the most promising research trajectories lie at the intersection of representation learning,
sensor fusion, and runtime uncertainty estimation. Lightweight transformer architectures
with frequency-domain compression [94] or hybrid spatial-temporal attention [95] are likely to
support greater scalability. Generative techniques such as diffusion models [100] offer pathways
to handle occlusion and data scarcity, but their translation into robotics will hinge on the
development of methods that enable causal decision-making under uncertainty. In summary,
our work contributes to this agenda by showing how calibration-aware, real-time HPE systems

can be made more resilient and suitable for human-centred, collaborative applications.

2.4 CONCLUSION

This chapter reviews the state of the art in extrinsic calibration and 3D human pose
estimation within the context of multi-sensor collaborative robotic systems. These two
domains, while often treated independently, are fundamentally linked in the design and

operation of human-centred manufacturing environments. As collaborative cells evolve toward
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greater autonomy, safety, and semantic awareness, they increasingly rely on precise spatial
alignment of heterogeneous sensor data and robust, real-time perception of human activity.

In the first part of the chapter, we examine extrinsic calibration techniques across a range
of modalities, including RGB, depth, [LiDAR], and radar. We highlight the technical challenges
posed by non-overlapping fields of view, static sensor configurations, and modality-specific
noise profiles. While traditional target-based methods offer high accuracy in controlled
conditions, their scalability and applicability to complex, fixed sensor networks remain limited.
Recent advances in targetless calibration, geometric feature extraction, and learning-based
approaches represent a shift toward more flexible and automated solutions, but questions
of generalisation, repeatability, and deployment readiness persist, especially in industrial
contexts that demand minimal intervention and high precision.

The second part of the chapter focuses on 3D human pose estimation using multi-camera
RGB systems. We survey a wide range of methods, from classical geometric triangulation to
volumetric fusion, mesh-based regression, and recent transformer and diffusion architectures.
These methods demonstrate remarkable accuracy on benchmark datasets, yet their deployment
in collaborative robotics faces practical constraints such as occlusions, latency, calibration
sensitivity, and limited generalisation to unstructured environments. Emerging approaches in
self-supervised learning, frequency-domain modelling, and generative inference show promise
in addressing these gaps, though their robustness under real-world conditions remains an
active area of research.

The literature reveals a clear trend: both extrinsic calibration and pose estimation
transition from static, highly constrained pipelines toward more integrated, adaptive, and
semantically aware perception systems. However, this transition remains incomplete. Current
methods often rely on assumptions that do not hold in collaborative industrial environments,
such as perfect synchronisation, unobstructed views, or homogeneous sensor layouts. Moreover,
there is a lack of evaluation protocols and datasets that reflect the practical demands of
human-robot interaction in complex settings.

This thesis builds on these insights by proposing novel methodologies that address the key
limitations identified in this chapter. Specifically, it advances a unified calibration framework
that accommodates fixed and moving sensors across modalities and a pose estimation pipeline
that exploits temporal and individual-specific priors to enhance robustness under occlusion.
In doing so, it aims to bridge the gap between theoretical accuracy and practical applicability,
contributing to the development of safe, perceptually capable, and context-aware collaborative

robotic systems.
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CHAPTER

A sensor-to-pattern calibration
framework for multi-modal

industrial collaborative cells

3.1 INTRODUCTION

According to the European Commission, Industry 5.0 aims to strengthen the contribution
of the industry to society by thinking beyond efficiency and productivity, aiming for the
development of technology towards the improvement of the worker’s quality of life, while also
respecting the planet [131], |[132]. With this expansion of Industry 5.0, many new technologies
are arriving to facilitate industrial and manufacturing jobs for humans by removing heavy
burdens such as lifting heavy weights and repetitive movements. For that matter, collaboration
with robots has become a highly researched topic because it can combine the expertise of
humans with the workload of a robot [133], [134].

A collaborative cell is a three-dimensional space in which a collaborative robot and
humans can safely coexist and carry out shared tasks. Safety requirements in such setups
are standardised [135], imposing strict constraints on robot motion during human-robot
interaction. These constraints primarily concern limitations on speed and torque when the
robot operates in proximity to humans. To meet these demanding requirements, a robust
perception framework is essential, particularly in the areas surrounding the robot. Achieving
this requires a dense network of strategically placed sensors throughout the cell, capable of
mitigating occlusions caused by the movements of people, objects, and the robot itself. Beyond
a multi-sensor configuration, employing a multi-modal sensor system introduces complementary
information that further enhances safety. For instance, range data from [[IDARk and RGB-D
cameras enables volumetric monitoring, while RGB images from standard cameras facilitate
object detection. These data streams can also be fused for human pose estimation, ensuring

continuous awareness of human positions within the cell and thereby safeguarding their
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security.

Despite its significant advantages, data fusion remains a complex challenge, particularly
when integrating information from multiple multi-modal sensors to create a unified intelligent
system within the collaborative cell. As outlined by Baltrusaitis et al. [136], the challenges of
multi-modality can be categorised into five key areas: representation, translation, alignment,
fusion, and co-learning. Representation concerns the structure of multi-modal data, leveraging
its complementarity and redundancy. Translation involves mapping data from one modality to
another. Alignment refers to identifying direct relationships between elements or sub-elements
across different modalities. Fusion entails combining multiple modalities to support prediction
tasks. Finally, co-learning addresses the transfer of knowledge between modalities.

It follows, then, that determining the alignment between sensors is a crucial step in fusing
multi-modal information, which brings us to the problem of extrinsic calibration: the process
of establishing the transformation between a set of sensors. In the context of a collaborative
cell, two major concerns emerge. First, as previously noted, the strict safety requirements
demand highly accurate calibration, which is not trivial with such complex systems. Second,
the large number of sensors and their differing modalities generate vast volumes of data,
making simultaneous processing particularly challenging. Moreover, the heterogeneous nature
of the sensor types adds complexity to data integration, such as the difficulty in selecting
calibration targets that are detectable across all modalities.

Although existing methods do address the extrinsic calibration problem, they are often
inadequate when applied to collaborative cells, which pose additional challenges. These
include multi-sensor, multi-modal configurations; the need for high-precision calibration; and
the sheer density of data generated. Additionally, collaborative cells can be physically large,
and the sensors’ [FoV] may not fully overlap. This alone rules out commonly used techniques,
such as the Open Source Computer Vision Library calibration tool, which assume
overlapping [FoVk between cameras.

To address these limitations, we propose a calibration framework based on optimising
sensor-to-pattern transformations. This approach is capable of calibrating complex robotic
systems involving RGB, depth, and [LIDAR] modalities. Unlike conventional sensor-to-sensor
methodologies, our sensor-to-pattern strategy simplifies the calibration process and, crucially,
accommodates sensors with non-overlapping [FoVk.

The contributions of this chapter are:

e The development of a calibration framework able to calibrate complex, multi-modal and
multi-sensor setups

« A solution to calibrate sensors with non-overlapping [FoVk

e A calibration framework able to calibrate RGB, [[iDAR] and depth modalities

The remainder of this chapter describes and demonstrates the concept of the methodology
undertaken to tackle the extrinsic calibration problem in a generic way. Section describes
the process of data acquisition, labelling and calibration itself. Section [3.3] presents the results

obtained in our collaborative cell with a robotic system of 7 sensors with three different
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modalities and a comparative study with other approaches in the literature. Finally, section

[3-4] summarises the contributions of this chapter.

3.2 METHODOLOGY

The standard procedure for calibrating multi-sensor systems is to use a calibration pattern,
which is positioned in such a way that it is accurately detected by all sensors. Then, the
classic approach is to formulate the calibration as an optimisation procedure that minimises
a set of errors. These errors are computed by an objective function, which is designed to
translate the quality of alignment between the sensors, given the transformation between
those sensors. The issue is that the errors are computed as a function of pairs of sensors. One

example is the usage of the reprojection error (e) for calibrating multiple camera systems,
expressed in equation (3.1f):

e = argArnin Z Z e<5i'i‘5j7d5“ dev)\Siu >\Sj)7 (31)

where 5T is the estimated transformation between sensors s; and sj, S represents the set
of pair-wise combinations of the sensors in the system, Z represent the set of images used
to calibrate the system, d denotes the detections of the pattern by a sensor, and finally A
represents the intrinsic parameters of the sensor.

However, in the case at hand, a very complex system, the usage of errors derived from
pairwise combinations of sensors (represented by S in (3.1))) is not scalable, since one must
develop different mechanisms, i.e., different versions of the objective function e, for each
pairwise combination of modalities. Moreover, in a collaborative cell, there will be many pairs
of sensors that do not overlap. In these cases, it would not be possible to compute the errors
using this problem formulation.

The differentiating aspect of our calibration methodology w.r.t. to others is that it uses
a sensor-to-pattern approach instead of the classic sensor-to-sensor error estimation. Since
each sensor views the pattern as a function of its intrinsic properties, pose, and pose of the
pattern, instead of using the pairwise transformation error to optimise the transformations
between sensors, we estimate the error by defining a function that uses the transformation

between each sensor and the calibration pattern, as expressed in equation ([3.2)).

e= argmin ZZ 6(SiTwapT1cU7ds“>\si)u (3.2)
{uTey{rTe} s ¢

where ST is the estimated transformation between sensor s; and the world coordinate frame
w, PT;" is estimated transformation between the pattern p and w, which varies according to
each collection c¢. Since our calibration framework tackles multi-modal systems, we refer to a
moment in time where data from all sensors in the system is collected as a collection ¢ and

not an image 7, to account for the fact that it may contain data from other modalities. To

calibrate, we use a set of collections C to which we refer to as a dataset. In this case, the
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overall error is computed by summing up the contributions of the sensors in the set of sensors
S, as opposed to the set of pairwise combinations of the sensors S.

One advantage of our methodology is that only one mechanism per modality must be
designed, as opposed to one mechanism per pairwise combination of modalities. Another
advantage is that it is possible to estimate an error for each sensor, provided that it views the
calibration pattern. This approach is much better suited to tackle calibration systems with
several non-overlapping [FoVk. Because we now use the transformation between the sensors
and the pattern to estimate the errors, the pose of the pattern must also be included as a
parameter to be optimised leg. As such, our calibration system estimates not only the pose
of the sensors but also the pose of the calibration pattern. This may sound counterintuitive,
but in fact, by enlarging the optimisation problem, we reduce its complexity.

In order to ensure robustness, the optimisation should consider errors from multiple
viewpoints, i.e., the sensors should observe the pattern from different viewpoints. This is
a standard requirement of any calibration procedure. For example, for calibrating a stereo
system, several images of both cameras are used.

In each collection, we store not only the raw sensor data but also the labels that describe
where the pattern was detected in the sensor data. Naturally, the detection of the pattern
may fail in some cases. This may be caused by issues in the detection algorithm, such as
sensitivity to illumination, or simply because the sensor does not view the pattern in that
collection. When, in a collection, there is at least one sensor that does not detect the pattern,
we refer to it as an incomplete collection. It is also possible that only a portion of the pattern
is identified, which occurs primarily due to a partial view of the calibration pattern in RGB
images. We refer to these cases as partial detections. Since a collaborative cell is a large
tridimensional space and the goal is to monitor its complete volume, it is common to have
small or non-existent overlapping [FoVk between different sensors. It is often very difficult to
find a position of the calibration pattern which is viewed by all sensors simultaneously. For
that reason, the number of incomplete collections and partial detections is larger than usual
in a collaborative cell system. A sensor-to-pattern paradigm is clearly much more adequate to
tackle such complex multi-modal and multi-sensor systems.

The next sections describe the configuration of a calibration procedure and the automatic
labeling and manual annotation mechanisms which are available. Finally, we detail the

objective functions for each of the three presented modalities.

3.2.1 Setup and Data Acquisition

Since the goal is to calibrate complex robotic systems, a prior step is required for configuring
the calibration. This step defines which sensors are to be calibrated. The coordinate frames
in the system are hierarchically organised in a topologically tree-like structure called the
transformation tree. The transformation tree of the collaborative cell used in this work is
shown in Figure 3.1

The calibration of a sensor requires the definition of which specific transformations that

is to be changed during the optimisation, in order to assess if the error is minimised. This
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Figure 3.1: Example of a transformation tree that represents the chain of transformations between
coordinate systems of the collaborative cell. Blue arrows signal that transformations
are dynamic, green arrows denote that the transformation will be optimised, frames are
highlighted in green when sensors output data in that coordinate frame, the red node
represents the calibration pattern link, which is both dynamic and is to be calibrated.

transformation must belong to the chain of transformations that go from the common reference
frame (world) to the sensor’s coordinate frame. For example, in Figure the sensor RGBy
is mounted on the small beam 1 coordinate frame, which is in turn assembled in the big beam
coordinate frame. The idea is to define one transformation along the world-to-sensor chain to
be estimated. These selected transformations are highlighted with green arrows in the figure.
The other transformations remain unaltered during the calibration. In the example of RGBo,
the selected transformation was between the small beamn 1 and RGB3 coordinate frames. Note
that the selected transformation does not necessarily need to include the sensor’s coordinate
frame, as in the example of the sensor RGBs.

The calibration procedure computes the overall sensor-to-world transformation, i.e., % Tw
in , from the chain of transformations for that respective sensor, where one selected
transformation is changing during optimisation and the others are static.

The process of acquiring data consists of moving a calibration pattern in front of the
sensors in a way that the pattern is viewed by all sensors at some moments of the acquisition.
The acquisition does not require that the pattern be visible to all sensors at the same time.

The dimensions of the calibration pattern must also be specified during the calibration setup.

3.2.2 Simulation Setup

To support the development and validation of the perception and calibration strategies
explored in this thesis, a complete simulation environment replicating the Laboratory for
Automation and Robotics Collaborative Cell (LARCC) collaborative cell was constructed
using the Gazebo simulator and the This environment integrates the physical structure
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Figure 3.2: Details of the collaborative cell’s main structure.

of the cell, the sensing equipment, and the robotic manipulator, allowing for realistic testing
of algorithms under controlled yet representative conditions.

The simulation process began with detailed measurements of the physical structure. Based
on these, a 3D model of the collaborative cell was developed, including elements such as
supporting beams, structural feet, and table surfaces. These components were modeled using
CAD tools and exported in formats compatible with and Gazebo, ensuring geometric
fidelity. The physical structure defines the internal space of the cell and serves as the foundation
for sensor placement. A visual representation of the design is shown in Fig. [3.2]

Each element of the system was described using modular Xacro files. Individual files were
created for the structural components, the UR10 robotic arm, and each of the sensors, including
RGB, RGB-D, and [LiDAR] devices. This modular structure facilitated both reusability and
maintenance. A macro Xacro file was then developed to define the spatial configuration of
all components, establishing the relative positions and orientations of each within a shared
reference frame. This ensured consistent deployment of the simulation setup and simplified
further development. The specifications used for simulating each sensor, such as resolution,
[EoV], and update rate, are summarised in Table [3.1] which reflects both manufacturer data
and the parameters applied within the simulation environment.

Following the structural modelling, a set of adapted Gazebo simulation packages was

integrated. Although simulation support and [ROS| drivers were available for the selected
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Table 3.1: Sensor configurations used in the simulation environment.

Sensor Resolution (px) [EoV] (°) FPS Range (m)
63.1 (H) x 49.4 (V) (RGB)

Orbbec Astra 640 x 480 58.4 (H) x 45.5 (V) (Depth) 30 0.6-8
Orbbec Astra Pro éigoxx4;§o(§6{§1i§ i (<HH)) v ((VV)) ((DReitBh)) 30 0.6-8
Orbbec Astra Mini 640 x 480 56821 ((HH)) ; 445?'54 ((VV)) (%%e?)]tgh)) 30 0.35-1
Kinect v1 (Xbox 360) 640 x 480 %27 ((Ifl)) 8 gﬁ(\g/)([gl;i? 30 0.8-4
Velodyne VLP-16 N/A 360 (H) x 30 (V) 20 200

Note: Specifications based on manufacturer datasheets and default simulation plugin parameters. Field of view
(FoV) values refer to horizontal (H) and vertical (V) angles.

sensors (Orbbec Astraﬂ Velodyne VLP-ldﬂ Xbox Kinect@ and the UR10 armlﬂ, several
adaptations were necessary. These included aligning coordinate frames, refining mesh files,
and tuning plugin parameters to ensure accurate behaviour in the simulated environment.
The resulting setup enabled the simulation of RGB and depth images, [LIDAR] point clouds,
and full robotic arm motion, thus supporting both perception and manipulation scenarios.

A key addition to the simulation was a movable calibration target based on a ChArUco
pattern, which was incorporated to support extrinsic calibration experiments. The pattern
could be repositioned in six degrees of freedom via an interactive marker, allowing for controlled
simulation of various calibration conditions. This included scenarios with incomplete pattern
visibility, limited sensor overlap, or non-ideal viewing angles. By manually adjusting the
pattern’s pose, it was possible to simulate realistic edge cases and evaluate the robustness of
the calibration procedures. The synthetic sensor data, capturing the target across multiple
modalities, was recorded into rosbag files. While intrinsic parameters were initially defined
by the simulation, they could also be optimised during calibration, allowing flexible testing of
both extrinsic and intrinsic refinement strategies. An example of the simulated pattern across
modalities is illustrated in Fig.

To streamline deployment and testing, a structured set of launch files was developed.
Each sensor and the robotic arm had their own dedicated launch file, allowing for modular
development and debugging. A unified bring-up launch file was also created to initialise the
entire simulation environment in a single command, simplifying full-system experiments and
reducing setup time.

This simulated environment provided a crucial platform for early-stage evaluation of system
performance. It enabled comprehensive testing of calibration procedures, sensor configurations,
and perception pipelines prior to any physical deployment in the collaborative cell,

ensuring greater robustness and efficiency in subsequent experimental phases.

1 github.com/orbbec/ros_astra_camera.git
Zgithub.com/ros-drivers/velodyne
3github.com/ros-drivers/freenect_stack.git

4github .com/UniversalRobots/Universal_Robots_ROS_Driver
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Figure 3.3: Representation of the simulated pattern across different sensors and modalities. The
simulation shows 4 RGB cameras, 1 depth camera, and 3 3D [LiDARE, with the green,
purple, and orange point clouds.

3.2.3 Automatic and Manual Labelling

When saving a collection, the sensor data is labelled automatically. That means that
information on where the pattern is identified in the data of each sensor is generated auto-
matically. Naturally, the format of these pattern labels differs from modality to modality. For
range data, a label is defined as the position of the outer edges of the physical chessboard.

For RGB data, a label consists of the pixel coordinates of the inside corners of the pattern.

RGB
The RGB automatic labeling uses the ArUco Marker Detection toolbox. We

have configured it so that at least 25% of the total number of corners must be identified to
assume a valid pattern detection. This automatic labeling of the RGB data using ChArUcO
patterns is very accurate and efficient. For this reason, we have found no need to develop
interactive tools to correct the automatic labels and produce manual annotations. Figure [3.4]

shows an example of a labeled RGB image.
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Figure 3.4: Example of a labeled image in a RGB camera.

3D LiDAR

The label representation for 3D [LIDARI data consists of a list of points that belong to
the sensor raw data and are identified as intersecting the pattern. In addition, we define two
separate classes: points that lie on the pattern plane, and a subset of the former that are
located on the boundaries of the pattern.

The procedure is semi-automatic, since it requires the user to define a seed point close to
the pattern. This is done using an interactive marker in Rviz. That seed is used as the center
of a sphere of predefined radius that selects only a small set of points where the pattern should
be located. Then, the support plane of the pattern is searched using a RanSaC algorithm.
Finally, the points that belong to the pattern are obtained as those that are close enough to
the support plane, i.e., the RanSaC inliers. The boundary points are then found by collecting,
for each vertical [LIDARlayer, the left and rightmost inliers. Figure [3.5] shows an example of a
labeled point cloud, where black points represent the physical limits of the calibration pattern,
and green points represent the points inside the calibration pattern.

It must be noted that, if needed, the [LiDAR] labeling can be reviewed and corrected

manually by selecting points in the point cloud and assigning them the proper labels.
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Figure 3.5: Example of a labeled point cloud from a 3D [LiDAR]l Gray points are raw data, points
annotated as belonging to the pattern are highlighted in green, and points annotated as
belonging to the boundaries of the pattern are annotated in red.

Depth Camera

The depth camera is labeled using a propagation mechanism, starting from an initial seed
point. Similarly to the [LIDARI labeling mechanism, the seed point is manually given in the
first frame, and from then on it is automatically tracked from frame to frame, using the centre
of mass of the detected pattern in the previous frame. As we are labeling adjacent frames,
we can assume that, from frame to frame, the movement of the calibration pattern is small
enough so that the centre of mass of the previous frame is still inside the area of the pattern
in the subsequent frame. Note that it can be redefined manually if, for some reason, the
detection of the pattern is not working correctly, for example, when the pattern leaves the
[FoV] of the camera and returns moments later. The propagation algorithm starts from the
initial seed point and uses a tetra-directional flood fill technique to propagate through the
area of the calibration pattern. The labels of depth images are separated into two categories:
boundary points and inside points. Figure [3.6] shows an example of a labeled depth image.

The automatic procedure detailed above does not work accurately in all frames. This is
due to the nature of depth images and to the proximity of other objects to the pattern. For
this reason, we have also developed a dataset reviewer in which incorrectly labeled images
can be manually annotated by defining a polygon around the pattern. Then, the previously
mentioned propagation algorithm is executed with this polygon acting as a propagation

constraint, which results in accurately defined labels for depth data.
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Figure 3.6: Example of a labeled depth map. Yellow points signal the subsampled [LiDARI] points
annotated as belonging to the pattern, while purple points denote the annotation of the
boundaries of the pattern.

3.2.4 Calibration

The calibration process begins by reading a previously recorded dataset, from which it
extracts and organises labels for each sensor and each data collection into a dedicated data
structure. These labels, along with the estimated positions of a calibration pattern (typically
a chessboard), are used to compute modality-specific errors. These errors form the basis of
an objective function, which is then optimised to estimate the rigid-body transformations
between sensors and the calibration pattern.

A distinguishing feature of our approach is that both the sensors and the calibration
pattern are allowed six degrees of freedom (translation and rotation). Granting this freedom
to the pattern often leads to more accurate calibration results, as it reflects the true variability
in its positioning during acquisition. However, this approach introduces a limitation: while
the sensors are calibrated relative to one another and to the calibration pattern, they are not
necessarily aligned with the fixed mechanical structures of the robotic system.

To address this, we propose an optional anchoring strategy. If the position of at least one
sensor is known with sufficient confidence, it can be fixed in space during the optimisation
process. This anchored sensor serves as a reference, and all other transformations (including
those of the calibration pattern) are optimised relative to it. This constraint ensures that the
final calibrated setup remains consistent with the physical configuration of the system.

The optimisation is performed using a non-linear least squares method, which minimises
the defined objective function over the set of parameters. Each sensor is represented by six

extrinsic parameters: three for translation (z,y, z) and three for rotation (r1,r2,73); while, in
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cases where intrinsic calibration is also performed, the intrinsic parameters of the cameras are

simultaneously estimated.

RGB Sensors

For RGB cameras, the calibration error is computed by comparing the detected 2D image
coordinates of the calibration pattern’s corners with their projected positions based on the
estimated 3D transformations. The objective function used is presented in Equation ,
where the error e[, q for a given collection ¢, sensor s, and detection d, is defined as the
squared norm of the difference between the detected image label z|. ; g and the projection of

the corresponding 3D pattern point:

2
‘ , (3.3)

e[c,s,d] = Hx[C,S,d} - P ([IC)TS X xd]ryzvks:us)

here, P(-) denotes the perspective projection function using the intrinsic parameters ks
and distortion coefficients ug of sensor s, and 27 is the estimated transformation from the

calibration pattern to the sensor frame for collection c.

3D LiDAR

For 3D [[LiDARI sensors, the objective function is decomposed into two complementary
components: orthogonal error and longitudinal error, capturing the alignment between the
observed point cloud and the known geometry of the pattern.

The orthogonal error, €ope o.qs TREBSUTES how far the labelled points deviate from the

] )
pattern’s surface along the pattern’s local Z-axis. It is computed by transforming the labelled
point x; from the sensor frame to the pattern frame and extracting its Z component:

eo[c,s,d] = [(STP>71 X xi]Z? (34)

[

the longitudinal error, ¢; evaluates the planimetric alignment in the XY-plane. It is

[e,s,d]?
defined as the squared distance from each detected boundary point, projected into the pattern

frame, to its closest ground truth point on the known pattern geometry:

\2> , (3.5)

here, 4 represents a ground truth point on the pattern, and z is a point on the boundary of
the detected label.

: —1
6l[c,s,d] = gélg' <H[$q - (STCp) X xb]ﬁ?y

Depth Cameras

The calibration strategy for depth cameras mirrors that of LiDARs, as both types of
sensors provide range data. However, a key distinction lies in the form of the raw data: while
[LiDARI produces 3D point clouds directly, depth cameras provide depth images in the 2D
image domain. Each pixel encodes the distance from the camera to a scene point, which can
be converted into 3D coordinates using the camera’s intrinsic parameters. Equation

formalises this conversion process:
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where (fy, fy) denote the focal lengths, and (c,, ¢,) represent the optical centre of the camera.
The result (X,Y, Z) is the 3D coordinate of the point labelled by pixel x,.
As with LiDAR, the orthogonal error is computed as the Z component of the transformed

3D label into the pattern’s frame:

o = |(CTF) " J-"(x,-)L. (3.7)

[e;s,d]

The longitudinal error measures how closely the converted label points lie in the XY-plane

2
el[c,s,d] = {Irélél ( ) ) (38)

in this formulation, x4 is a known ground truth corner or edge point on the pattern, and

of the known pattern geometry:

[2g = (CT2) 7" x F(a)]

Yy

F(xp) is the 3D coordinate of a boundary label, converted from its pixel location.

It is important to note that this error function considers only the boundary points of the
label. However, given prior knowledge of the pattern’s dimensions, it is possible to synthesise
a full set of ground truth edge points to increase precision. Each labelled point is projected
from the sensor’s frame into the pattern’s local coordinate system and compared to its closest
ground truth counterpart. Since only the longitudinal misalignment is of interest, the error is

computed in the XY-plane only.

3.3 TESTS AND RESULTS

As discussed in previous sections, our approach enables the simultaneous calibration
of all the sensors in the system. However, other approaches cannot carry out this global
optimisation since they operate with pairs of sensors. Because of this, the assessment of the
calibration accuracy is conducted in a pairwise configuration, so that it may be applied both
to our methodology (despite the fact that it calibrates the complete system) and also to other

approaches.

Tests and results are divided and detailed in the following parts: [Collaborative Celll
[>etup Calibration |RGEB to RGE Evaluation} |[LIDARI to ILIDARI Evaluation} [LiDARI to RGB]
Bvaluationf [LIDARIto Depth Evaluation| and [Depth to RGB Evaluation|

3.3.1 Collaborative Cell Setup Calibration

As mentioned previously, a collaborative cell is a space where collaborative robots and
humans can safely work together. The ultimate goal would be that the robot and human

could participate in tasks with a common goal to achieve a more efficient work.
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In our particular case, we have built a collaborative cell with 4m x 2.8 m and 2.29 m high.
Figure [3.7] shows the collaborative cell in simulated and real environment. In terms of sensors,
the cell includes three [[IDARL, one RGB-D camera and three RGB cameras. From now on,
these sensors will be referred to as LIDAR1, LIDARg and LIDAR3, DEPTH; and RGB1, RGBs and

RGB3.

Ue)

Figure 3.7: Simulated and real representation of the collaborative cell that serves as a case study.
The cell contains a gantry where several RGB, depth, and [LIDAR] sensors are mounted.
In the middle of the volume there is table and a robotic manipulator which will interact
with human operators. Red circles represent RGB cameras, blue circles represent depth
cameras and yellow circles represent 3D [[iDARI

[ATOM] allows to see the [FoVl of the different cameras within the configured system,
according to their intrinsic parameters. Figure [3.8] shows a representation of the [FoVk of the
sensors and the coverage of the cell by the [LIDARI point clouds. In the image, the gray point
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clouds come from the LIDAR; (right), the green ones from the LIDAR, (centre) and the yellow
ones from the LIDARg (left). The purple frustum represents the [FoVk of the sensor DEPTH; .
The RGB [EoVk are represented by the light orange, gray and green for RGB; (left), RGB3
(centre) and RGBy (right) respectively.

A vided”| has been made available that includes a demonstration of the complete calibration

procedure for this collaborative cell.

# -* P 7 1 \

Figure 3.8: Fields of view (FoV) of the cameras mounted on the collaborative cell. The point clouds
produced by the [iDAR] are also shown.

Table [3:2] shows the details of the used train and test datasets for the results presented
in this section. The train dataset is the dataset that is used for calibration and where the
transformations between sensors are estimated. The test dataset is a non-calibrated dataset,
with the sensors in the same position as the train dataset, where the results will be evaluated
with the transformations obtained during the calibration of the train dataset.

Table 3.2: Descriptions of the datasets used in the experiments, where RGB partials mean the number

of partial calibration pattern detections in the RGB sensors and complete denotes the
number of collections where the calibration pattern was detected by all seven sensors.

Type of data  Dataset  # collections # RGB partials # complete

ulati train dataset 23 35 5
stttiation test dataset 17 26 4
train dataset 29 61 6

real
test dataset 14 29 4

The evaluation of the calibration is conducted in a pairwise manner. The results will

be presented both in the simulated system and using real data. Note that to calibrate the

Shttps://youtu.be/KFPUTGRATBw
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simulated system, we induced an initial estimate random error of 0.1 m and 0.1rad to the

initial position of the sensors to reinforce the validity of the method in simulation.

3.3.2 RGB to RGB Evaluation

The RGB to RGB sensor evaluation is computed by projecting the labels of the source
sensor, using the calculated transformation matrix, to the target sensor image and calculating
the reprojection errors.

Table shows the root mean square errors for both simulation and real data calibration.
In the calibration using simulated data, we obtained sub-pixel accuracy with an average of
half a pixel. As expected, the accuracy in real data is lower, with an error of around 1.2 pixels.
The reason for this could be that real data is less controlled and has more sources of error
than simulation, such as, for example, illumination, reflectivity, and background noise that
might influence the accuracy of detection of the calibration pattern. This table also presents
the results using the same data for the Calibration Tool, a very popular computer
vision library used for stereo camera calibration. As discussed in Chapter [2| most calibration
algorithms use a pairwise methodology, which is the case with Calibration Tool. This
means that, to calibrate the entire system, it would require a sequential pairwise calibration
by calibrating all the possible combinations of two sensors. Note that for some camera pairs
it was not possible to calibrate using This is because these pairs contain cameras
with a very small overlapping [FoVl Moreover, uses a pattern detection that requires
that the pattern be fully visible in the image in order to be detected. Because of this, there
were no collections in which both cameras in the pair were able to detect the pattern. Since
is a sensor-to-sensor approach, it cannot operate in these circumstances.

We can also conclude that, even calibrating seven different sensors simultaneously, the
proposed approach still managed to obtain better RGB pairwise results when compared to

We have also compared our approach with Kalibr |9]]36], which is a more recent multi-
camera intrinsic and extrinsic calibration tool. We were only able to use Kalibr in a pairwise
configuration. This calibration framework, unlike Calibration Tool, is already a
multi-sensor method based on optimisation. Nonetheless, this method is not multi-modal and
is only able to calibrate RGB cameras. Results are also presented in Table

Table 3.3: Pairwise root mean square errors for the RGB to RGB evaluation in pixels.

Our Framework [OpenCV] Kalibr
Sensor Pair Sim. Real Sim. Real Sim. Real
RGB1-RGBy  0.684 1.536 @ @ 2 1.010

RGB;-RGB3  0.463 1.085 0.675 1.828 1.290 0.906
RGB2-RGB3  0.541 1.113 0578 (@ @) 0.743

average 0.563 1.245 0.627 1.828 1.290 0.825
(€Y error: No complete detections of the chessboard.

(2) Kalibr error: Cameras are not connected through mutual observations.
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Kalibr also shows the same problem as since in some situations it is not able to
calibrate when cameras have minimal overlapping [FoVk. In the real-world scenario, Kalibr was
able to perform calibration in all three camera pairs with sub-pixel performance. Although
the performance is slightly better in comparison to our method, it should be noted that this
calibration framework is only able to calibrate cameras. In contrast, our system calibrates
several modalities all at the same time.

As we can see by looking at Figure RGB; (orange frustum) and RGBy (green frustum)
have minimal overlap and very different orientations. This makes it difficult to position the
calibration pattern in such a way that it is visible by both sensors. For that reason, that
camera pair is the most difficult to detect. Unlike Kalibr can calibrate this pair in
the real data scenario because it uses a different chessboard detector, which does not require
that the pattern is fully visible in the image. Even so, of the 29 available collections in the
training real dataset, Kalibr was only able to use 8 for calibration.

Regarding the RGB2-RGB3 pair, was not able to calibrate with the real data
because the detections of camera RGBg are all partial, which is a problem that Kalibr does not
have. Regarding simulation, camera RGB2 has more complete detections using our pattern
detection algorithm. However, the Kalibr detection algorithm was not able to produce
detections of the pattern for both images in the same collection, and for that reason, it was

not able to calibrate.

3.3.3 to Evaluation

The evaluation between [[IDAR] pairs is conducted by transforming the points of the
source [LiDAR] into the coordinate system of the target [IDAR] Then, for each point in the
target [LIDAR] we obtain the closest transformed point in the source [[IDAR] and compute
the distance between both.

Table shows the calibration errors for the [LIDARHLIDARI pairs. Considering that the
calibration pattern is at a distance of 2-2.5 m from each LiDAR, the maximum distance
between [LIDAR] points measuring the pattern is around 100 mm. When transforming the
labelled points of the source [LIDARI] to the target [LIDARI coordinate system, the labels could
end up in such a way that the scan of the two [LIDAR] have a significant displacement between

them caused by the low sensor resolution.

Table 3.4: Pairwise root mean square errors for the [[IDARI to [LIDAR] sensors evaluation in mm.

ICP
Ours Initial Aligned
Average Best Average Best
Sensor Pair Sim. Real Sim. Real Sim. Real Sim.  Real Sim. Real

LIDAR|-LIDARy 26.472 77.504 76.541 294.977 28.088 207.025 30.398 68.524 127.468 75.617
LIDAR1-LIDAR3 33.049 69.234 248.526 84.633 43.230 265.582 33.033 67.312 32.367 70.103
LIDAR92-LIDAR3 39.401 13.946 423.132 140.611 38.212 15.900 38.361 24.105 115.198 183.892

average 32.974 53.561 249.400 173.407 36.510 162.836 33.931 53.314 91.678 109.871
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Considering this low sensor resolution it is natural that the error values in Table are in
the magnitude of a few tenths of millimetres. Table [3:4] also shows the calibration results for
the same datasets using the Iterative Closest Point ([CP]) algorithm. [CP]is a very common
iterative solution for the alignment of two sets of 3D data. The difference between Initial
and Aligned [CPk indications in the table is that Initial has the same initial estimate as our
framework, and Aligned has a better initial estimate created by manually aligning the point
clouds. The [[CP| algorithm is executed for the pair of point clouds in each collection, which
means that, as Calibration Tool, it is also a pairwise algorithm and requires some
form of sequential pairwise calibration to calibrate all of the sensors in the system. Thus,
there is an estimated transformation for each collection. The difference between the Best and
Average [[CDk is that the Average uses the average transformation estimated for all collections,
while the Best makes use of the estimated transformation which had the least amount of
estimated [[CP] error.

When comparing the [CP] results with our framework, we can conclude that the only one
that comes close is the [CPl Aligned Average. Nevertheless, the [CPlis apairwise method,

while our method obtained similar results while calibrating all sensors simultaneously.

3.3.4 [LiDARI] to RGB Evaluation
The [LIDARI] to RGB camera error metric is assessed by projecting the [LIDAR] labelled

points to the RGB image using the transformation between sensors estimated during calibration.
However, the labels of the RGB data correspond to the inside corners of the chessboard
or ChArUcO. In contrast, the [iDAR] data labels correspond to the physical limits of the
chessboard. Therefore, the RGB images for each collection need to be manually labelled in the
test dataset to identify the physical limits of the pattern. Those labels can then be compared
to the [LIDARIabels using the reprojection error.

Table shows the reprojection errors obtained from pairwise evaluations of the calibration
of both the simulated and the real data. As explained before, the [IDAR] have a low resolution
so it is expected that these errors have higher magnitude when compared with RGB-to-RGB
evaluation errors. In this evaluation, we can see that results are on average around 1 or 2
pixels of reprojection error. The difference between simulated and real results is approximately
0.5 pixels. This shows that the evaluation is consistent: as expected, the real data is less
accurate. Also, there is no significant difference between the several pairs of sensors. Our
explanation is that since the has a lateral 360° [EoV] there is complete overlap between
all camera{LiDATRI pairs.

Figure [3.9] shows the projection of the three [LIDARI point clouds into an RGB frame after
calibration. The point clouds are colored according to the distance to each sensor. As such,
changes in an object in the image should align with changes in the colour of the point clouds.
As we can see, point clouds align almost perfectly with the shape of the chessboard in the

image, which demonstrates that the calibration was successful.
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Table 3.5: Pairwise root mean square errors for the [LIDAR] to RGB sensor evaluations in pixels.

Source Sensor Target Sensor Simulation Real Data

LIDAR] RGBq 1.726 2.516
LIDARo RGB1 1.801 2.582
LIDARj3 RGBq 2.692 3.297
LIDAR{ RGBo 3.502 3.837
LIDARs RGB2 3.659 3.173
LIDARg RGB2 2.854 2.754
LIDAR{ RGB3 2.892 3.767
LIDARg9 RGB3 1.763 2.768
LIDARj3 RGB3 2.352 3.189

Average 2.582 3.098

Figure 3.9: Projection of point clouds from all [[IDAR] to the image of camera RGB3 after calibration.
The point clouds are colored according to the distance to each sensor. As such, changes
in an object in the image should align with changes in colour of the point clouds.

3.3.5 [[iDARI to Depth Evaluation

Similarly to the [iDARFRGB evaluation, the LiDARFdepth evaluation consists of projecting
the [[iDARpoints to the depth image. The difference is that the depth labels are also the
physical limits of the chessboard, so we can directly compare the points without needing
additional manual labeling.

Table [3.6] shows the results of the calibration error for simulated and real data. Once
again, simulated and real results have a small sub-pixel difference, which shows consistency.
Table also shows calibration results using the [CP| technique, where the different variants
are the same as the ones in the [LIDARHLIDAR] evaluation. None of these techniques obtain
calibration results as good as the ones obtained with our methodology.

Figure [3.10] shows the projection of the point clouds from three [[IDAR] into the depth
map. As we can see, the calibrated point clouds align well with the pattern and other features

in the image, like the table at the bottom, and the structure of the cell on the left side.
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Table 3.6: Pairwise root mean square errors for the [LiDAR] to depth sensors evaluation in pixels.

ICP
Ours Initial Aligned
Average Best Average Best
Sensor Pair Sim. Real Sim. Real Sim. Real Sim. Real Sim. Real

LIDAR1-DEPTH; 1.281 1.791 12.591 166.459 1.575 84.895 5.563 9.170 2.094 &8.339
LIDAR9-DEPTH; 1.054 1.608 16.478 30.654 45.970 4.883 2.477 4.392 1.915 6.114
LIDAR3-DEPTH; 1.584 2.058 34.246 148.168 5.951 144.052 3.025 2.055 3.493 2.050

average 1.306 1.819 21.105 115.094 17.832 77.943 2.751 5.206 2.501 5.501

Figure 3.10: Projection of point clouds in the DEPTH; sensor depth map after calibration. The point
clouds are colored according to the distance to each sensor. As such, changes in an
object in the image should align with changes in the colour of the point clouds.

3.3.6 Depth to RGB Evaluation
On the depth-to-RGB pairwise evaluation, we project the depth labels to the RGB image

using the transformations obtained during calibration. Again, there is a difference between
the nature of the labels, so we use the annotations of the RGB images that were already made
for the [ADARIRGB evaluation to compare the physical pattern limits.

Table shows the calibration errors of the depth-RGB pairs. The average errors are
around 3 pixels, which are clearly above those for the [LiDARMo-RGB evaluation. We believe

this is because the depth estimation is as precise in the depth sensors when compared to

[LiDARI
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Table 3.7: Pairwise root mean square errors for depth-to-RGB sensors evaluation in pixels.

Source Sensor Target Sensor Simulation Real Data

DEPTH; RGB; 3.328 3.990
DEPTH; RGB2 3.212 4.553
DEPTH; RGBj3 3.642 3.584

Average 3.394 4.042

3.4 FINAL CONSIDERATIONS

This method solves the problem of the calibration of complex, multi-sensor, and multi-
modal systems. To do so, we created a calibration framework based on a sensor-to-pattern
paradigm, which has clear advantages over sensor-to-sensor calibrations, which are the basis
for most of the current calibration approaches. Our approach provides several improvements

w.r.t. the state-of-the-art, such as:

e a solution to calibrate any number of sensors and several modalities;
o a solution for systems with non-overlapping [FoVk.
« the ability to accurately calibrate RGB cameras with partial detections;

e the simultaneous calibration of any number of sensors;

Furthermore, we provide a complete calibration framework with seamless integration with
the ecosystem, available at https://github.com/lardemua/atom.

Results show that our framework is able to achieve similar, or even better performance
when compared with other state-of-the-art pairwise calibration methods, while calibrating all
sensors from three different modalities simultaneously.

One shortcoming of our approach is the inability to calibrate the sensors with the structure
of the robotic system. For example, in the case of the collaborative cell used in the experiments,
it was necessary to manually calibrate one sensor w.r.t. the gantry structure. Then, this
sensor is fixed, and the calibration moves all other sensors w.r.t. the fixed one. A better,
automatic procedure for solving this problem would be an interesting addition.

As discussed throughout the chapter, collaborative cells are highly complex systems that
render current calibration approaches unusable. Furthermore, collaborative cells have several
additional challenges, such as the minimal overlapping [FoVk between sensors. Our approach is
able to tackle all these challenges, as the method was able to carry out a successful calibration

of a highly complex collaborative cell.
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CHAPTER

New Methodology to Calibrate
Depth Sensors in Multi-Modal

Dynamic Setups

4.1 INTRODUCTION

The importance of calibration becomes increasingly evident as sensor technology advances
and multi-modal learning gains prominence in diverse fields like remote sensing, robotics
[137], Simultaneous Localization and Mapping (SLAM)]) [138], scene classification [62], and
autonomous driving [84]. Data fusion can occur at different levels, including early fusion
(data-level and feature-level) and late fusion (decision-level) [139]. While late fusion performs
classification independently for each sensor, early fusion relies heavily on accurate calibration
to seamlessly integrate data from various sources by aligning them within a common reference
system. This multi-sensor calibration process, both intrinsic and extrinsic, is essential for
transforming data from distinct sources into a unified coordinate framework, enabling effective
and robust multi-modal sensor fusion [139].

RGB-D cameras, which combine RGB and depth sensors, are widely used in applications
requiring both types of data. Although these cameras come with factory calibration, it often
fails to meet the precision demands of certain applications, particularly those requiring extrinsic
calibration between sensors. When multiple RGB-D sensors are involved, determining the
extrinsic parameters between various sensor pairs becomes critical. In industrial environments,
such as collaborative robotic cells, deploying multiple sensors ensures complete coverage for
human safety and efficient operation. These sensors may include several RGB-D cameras or
devices of varying modalities, making cross-calibration between them a necessity.

A specific and increasingly common calibration scenario is the hand-eye configuration,
where cameras are mounted on the end-effector of a robotic manipulator. Calibration in

this setup involves determining the transformation between the camera and the end-effector.
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While existing approaches focus predominantly on calibrating RGB sensors in hand-eye
setups, incorporating depth sensors into this configuration is a promising innovation. Such an
approach enables applications like 3D object reconstruction through manipulator-controlled
multi-view imaging. To the best of our knowledge, state-of-the-art hand-eye calibration
methods largely neglect the depth modality. This chapter addresses this gap by introducing
a novel methodology that includes depth sensors in hand-eye calibration, expanding the
potential applications of such systems.

In large-scale industrial environments where hand-eye configurations coexist with fixed
sensors, extrinsic calibration between mobile and stationary sensors adds complexity. This
scenario requires cross-calibration between sensors of different modalities, including those
mounted on robotic manipulators and those fixed to the environment.

Despite ongoing research, current calibration methods face several limitations. Most
approaches treat RGB-D cameras as inseparable sensor units and offer little support for the
flexible, independent calibration of RGB and depth components, particularly in dynamic
contexts such as hand-eye setups. Furthermore, there is a lack of unified frameworks that
enable accurate extrinsic calibration across heterogeneous sensor types, such as RGB, depth,
and LiDAR, especially when combining fixed and mobile sensors.

This work tackles the challenge of calibrating complex multi-modal sensor systems in
dynamic robotic environments, with a particular focus on configurations that combine mobile
(hand-eye) and static sensors. To address these challenges, we detail a methodological
extension of the [ATOM] framework [48], [80], [140] to support depth sensors via a dedicated
cost function, enabling independent calibration of RGB, depth, and [LiDAR] modalities while
maintaining global consistency. Our approach leverages a sensor-to-pattern strategy based on
a transformation tree of coordinate frames and is validated in both simulated and real-world
scenarios.

The contributions of this chapter can be summarised as follows:

e A detailed and extensible methodology for integrating depth sensors into existing
calibration workflows, specifically in robotic systems involving hand-eye configurations;

o Comprehensive experimental validation of the proposed calibration pipeline across
mobile and fixed multi-modal sensors—including RGB, depth, and LiDAR—highlighting
robustness in both simulated and real-world industrial scenarios;

« Extension of the framework [48], [80], [140] to support the calibration of depth

sensors, broadening its application to multi-modal sensor systems.

The subsequent sections provide a detailed account of the methodology and results. Section
[4:2] explains the calibration process, emphasising the depth modality and its unique challenges.
Section [4.3] presents experimental outcomes, beginning with standalone RGB-D calibration and
culminating in a multi-modal system featuring hand-eye setups and fixed sensors, including
[LIDAR], RGB, and depth. Finally, Section summarises the chapter’s contributions.
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4.2 METHODOLOGY

The process of determining the extrinsic calibration of a system, specifically the transfor-
mations between various coordinate systems, typically necessitates the presence of a common
feature, usually a calibration pattern, within the scene. This feature facilitates the estimation
of the relative positions of each sensor. In our approach, we refer to this feature as a "cali-
bration pattern', which can take the form of either a chessboard [65] or charuco [43], [44],
[53]. The calibration pattern, depending on the sensor modality, provides visual or physical
features that enable the calibration process.

The methodology outlined in this manuscript extends a previously developed calibration
tool, known as [48], to include the depth modality within its spectrum of sensors for
calibration. The calibration of a single RGB hand-eye was already approached previously with
the [ATOM] framework [80]. However, this extension demonstrates that the framework can
calibrate systems that combine both fixed and dynamic sensors. Furthermore, the addition of
the depth modality aligns with [ATOMs sensor-to-pattern calibration approach, deviating
from the more conventional sensor-to-sensor calibration methods. This sensor-to-pattern
approach sees calibration as a single optimisation process for all sensors, ensuring that the
position of the pattern and the sensors are optimised so that the detections of the pattern
match its actual position.

In our method, a detection occurs when a sensor identifies the calibration pattern at a
given instant. When multiple sensors simultaneously detect the same instance of the pattern,
this forms a collection, which also includes the corresponding (uncalibrated) transformations
of the system. A series of such collections, gathered from different sensor poses or pattern
configurations, constitutes a dataset. This structure is central to our calibration framework,
as it enables joint optimisation of sensor-to-pattern transformations across heterogeneous
and potentially asynchronous sensors. Figure illustrates the definitions of a detection,
collection and dataset.

[ATOM's approach to extrinsic calibration deviates from the norm by utilising a sensor-
to-pattern framework instead of the conventional sensor-to-sensor approach. Equation
clarifies the underlying philosophy of the sensor-to-pattern approach. It expresses that the
cost function error, F', is a function of the transformation between each sensor and the world,
denoted as 5T’ ', the detection of the pattern for that sensor, dg,, and its intrinsic parameters,
Kg,. The error is also contingent on the transformation between the world and the pattern,
represented as TP for each collection. The error term e(-) is modality-specific: RGB sensors
compute a reprojection error in image space, while range sensors (LIDAR] and depth) use
3D geometric criteria. Specifically, the depth error includes the orthogonal component e,
(Equation )7 which measures misalignment along the pattern’s normal axis, and the
longitudinal component e; (Equation ), which evaluates the distance between detected
boundaries and the known pattern contour in the XY plane. This unified error formulation

enables a joint optimisation across sensor modalities.
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Figure 4.1: Illustration of the definitions of a detection, collection and dataset.

F = argmin (ZZe(wa,siTw,dsi,KSJ) (4.1)
c S

sifw

The cost function employed by the algorithm for solving the optimisation problem is
modality-specific and depends on how the sensor perceives the calibration pattern. Range
sensors (such as [[IDAR] and depth sensors) detect the physical boundaries of the pattern,
while RGB sensors identify the black and white patterns on the calibration board. For detailed
information on the cost functions for RGB and [[iDAR] sensors, please refer to .

Incorporating the depth modality into the [ATOM framework was motivated by the
growing demand for RGB-D camera calibration. A distinct cost function was developed to
accommodate depth sensors. Depth sensors operate by measuring the distance to objects
in the scene by projecting specific infrared light patterns, classifying them as range sensors.
They are incapable of interpreting the printed pattern on the calibration board, but they can
detect the physical boundaries of the pattern in the image or depth cloud, akin to [[iDARE.
The cost function for depth sensors comprises two main components: orthogonal (e,) and
longitudinal (e;) errors. The orthogonal error, represented by equation , measures the
distance between the pattern at its current pose and the points detected as pattern points
in the depth data. In theory, this means that the detected pattern points for that collection
and sensor, X[ 4, need to be transformed from the camera coordinate frame to the pattern
coordinate frame using the estimated transformation between the sensor and the pattern for
that particular collection, STf . The distance that equals the orthogonal error is the variation of
the Z coordinate, considering that the pattern is in the XY plane in its own defined coordinate
frame, as is represented in Fig. This means that it is the Z coordinate from the detected

pattern points in the depth image transformed to the pattern’s coordinate system.
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Figure 4.2: Calibration pattern’s coordinate frame, where circles correspond to the detected corners
of the pattern.

Copy = [(S:f’g)_l . X[C,S]] Z (4.2)

The longitudinal error, expressed by equation is calculated using the points that
belong to the physical limits of the calibration pattern. The boundary points detected in
the depth image, x|, ), are once again projected to the pattern’s coordinate frame using the
estimated transformation between the sensor and the pattern in that particular collection, *TP?.
Then, we calculate the Euclidean distance (in the XY plane) between that point and all the
points in the pattern’s border that are sampled using the lines that define the pattern’s body
that are defined as Q. This allows us to find, for each labeled boundary point, the closest
point from the set of sampled points, P, which will be considered the error. The objective is
for all the boundary points to have corresponding pattern points and for all their Euclidean
distances to be the closest possible, which would mean that the labeled data matches the

pattern’s position.

2

e = min

STP ! X 4.3
st geQ q—( C) " ewsit] (4.3)

4.2.1 Labelling Depth Data
Depth images require labelling to establish the pattern’s location within each collection.
The pattern is identified through the selection of a seed point within the image, which serves

as the starting point for a propagation algorithm that tries to find its boundaries. Initially,

this seed point is positioned at the centre of the image. However, if it is not within the
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boundaries of the pattern, the user has the option to choose a point within the pattern as a
new seed point for propagation.

Once the seed point is accurately defined, the algorithm calculates the seed point for the
subsequent frame by determining the centre of the detected pattern’s shape in the current
frame. This approach is valid under the assumption of continuous pattern movement, which
ensures that the seed point will remain within the boundaries of the pattern in the next image.
With a well-defined seed point, a flood-fill algorithm is applied to determine the rest of the
shape of the pattern.

Post-processing of the image is carried out to fill holes and enhance the definition of the
pattern’s shape. The pattern’s boundaries are identified using a "find contours" algorithm. In
Fig. [£.3] we can observe a 3D representation of points in space with respect to the camera’s
coordinate system on the left, along with an overlay of the pattern aligned with the detected

depth boundaries on the right.

Figure 4.3: Representation of the detection of the 3D boundary points of the calibration pattern by
depth sensors.

4.3 TESTS AND RESULTS

In this section, we present results for two systems, both in simulated and real environments.
The first system is composed of a single RGB-D camera. The hardware used in this setup was
an Asus Xtion Pro. The second system is a complex system including an RGB-D hand-eye
robot and three additional fixed sensors (RGB, depth, and [LIDAR]). The hardware used in
this setup was an Orbecc Astra as the RGB camera, a Microsoft Kinectl as the depth camera,
an Orbecc Astra Mini as the hand-eye RGB-D and a Velodyne VLP-16 as the 3D [LiDARI

Digital twins are built in to match the real-world systems. The use of simulated
data allows for controlled data and a known ground truth, which can be used to evaluate the
performance of the framework in different environments and induce different types of errors.

Although the framework uses a sensor-to-pattern, all-in-one approach, evaluations are

pairwise. The general approach when evaluating a pair of sensors is to project the pattern
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detections from one sensor to another, using the transformation estimated during calibration,
and obtain the error between the projected and detected data. The evaluation uses the physical
limits of the pattern, except in RGB pairs, where the projected points are the Charuco or
chessboard pattern detection corners. When evaluating combinations that involve RGB and
other modalities, the physical borders in the RGB images of the dataset are annotated by

hand to enable a fair comparison.

4.3.1 RGB-D Calibration

RGB-D cameras are composed of RGB and depth sensors. In this experiment, we will
carry out a simple calibration of an RGB-D system and compare it with the factory calibration
and other state-of-the-art RGB-D calibration methods.

Fig. shows the transformation tree of our RGB-D system, that is, the topology of
coordinate frames that compose the system. When configuring [ATOMs framework, the
user needs to define a transformation to optimise for each sensor. The transformation does
not necessarily need to be related to the link from which the sensor data is produced. For
example, in this case, the frame ID for the RGB and depth data are the optical frames but,
for calibration, it is more interesting to calibrate the transformations from the world link to
the RGB and depth links, respectively. In more complex systems, the range of options for
optimisation is even wider and it is up to the user to define which transformation they want

to calibrate for each sensor.

—— —
——
e —
~,

camera link

rgb link depth link
rgb optical depth optical
frame frame
Figure 4.4: Transformation tree for an RGB-D system. Green arrows represent the transformation

that will be estimated during calibration. Blue arrows represent dynamic transformations.
Green nodes represent the sensor links from which data is output.

Fig. shows an example of data labelling for RGB and depth sensors for simulated and
real data. As mentioned in previous sections, RGB sensors detect the printed ArUcO codes on
the pattern, while depth sensors detect the limits of the board. To allow comparison between
calibration metrics, the physical limits of the board are manually labelled for the RGB images
for each collection, since the automated proposal only detects the ArUcOs in the images.

Table [4.1] summarises the key characteristics of the datasets employed in the RGB-D
calibration experiments. The train dataset refers to the data used to compute the calibration
parameters. In contrast, the test dataset, although uncalibrated, shares the same sensor
configuration and is used to evaluate the accuracy of the estimated transformation. Evaluation
is performed in a pairwise manner by projecting the annotated boundary points, X;*, from

the source sensor (ss) onto the target sensor (¢s). These boundary points are obtained using
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Figure 4.5: Example of detection for RGB and depth in an RGB-D system for simulation (2 top
images) and real data (2 bottom images).

a custom annotation script that sequentially displays the RGB images from each collection,
allowing for manual annotation of the board’s physical limits, as shown in Fig. [4.6]
The projected points are then compared against the corresponding boundary labels, X/?,

of the target sensor. The projection error is computed using equation (4.4]).

erms = > ((min ([t - =" sH2)) (4.4)

t
sexpe XY

The real-world experiments were conducted in an indoor laboratory setting with controlled
ambient lighting, although some variability in lighting occurred due to natural daylight. The
Asus Xtion Pro RGB-D sensor was mounted on a fixed tripod, and the calibration pattern
was also mounted on a custom-made structure that allows us to manually move the pattern
across the scene to obtain different poses. Pattern distances from the sensor varied between
1 and 3 m. For the real dataset, a total of 16 collections were used for training and 9 for
testing. Each collection corresponded to a distinct pose of the calibration pattern, ensuring
variation in orientation and distance. Despite efforts to maximise coverage, some RGB frames
only partially captured the pattern, as indicated in Table

First, we tested our calibration methodology in a simulated environment. In this context,
it is possible to know the exact transformations between the sensors, i.e, the ground truth pose,

which allows us to evaluate exactly how well the algorithm is performing. In real scenarios,
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Figure 4.6: Manual annotation of the physical limits of the calibration pattern in RGB images.

Table 4.1: Descriptions of the datasets used in this experiment, where RGB partials mean the number
of partial calibration pattern detections in the RGB sensors. All the collections in the
datasets were complete, meaning that all the collections had detections for both sensors.

Type of data  Dataset  # collections # RGB partials

simulation train dataset 15 6
test dataset 11 7
real asus train dataset 16 9
test dataset 9 7

we cannot use the transformations given by the simulation as an initial guess pose, because
these are already in the correct position. To counteract this, we induce random noise to the
initial guess pose for calibration in both translation and rotation. In this case, we induced
an error of 0.1 m and 0.1rad to the data to allow for a fair comparison. Table [£.2] shows the
displacement between the ground truth links and the calibrated depth link. In this system,
the RGB camera was fixed and only the pattern and the depth link moved around it. For
that reason, this evaluation is only for the depth sensor. As we can see, the calibration error

is low, below 1 cm, which demonstrates that the system was accurately calibrated.

Table 4.2: Ground truth evaluation of calibrated transformations for simulated results.

From To t(m) R(rad) X (m) Y (m) Z(m) ¢ (rad) 6 (rad) ¢ (rad)
camera link  depth link 0.0090 0.0030 0.0007  0.0037 0.0082 0.0003  0.0026  0.0015

Table displays the projection errors resulting from the calibration of simulated and
real data. Our evaluation includes outcomes from the calibration using the 3D information

generated by the depth sensor. Following the philosophy of the OpenNI Library, we also
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calibrate the IR data as an RGB camera, which is viable because the depth sensors use IR
projections to obtain the 3D data, and therefore IR and depth have the same coordinate
frame. Results are also presented for calibration using IR and RGB data with the
[141] and Kalibr [9][36] libraries. It is worth noting that the IR projector needs to be covered
by paper to diffuse IR illumination for the calibration pattern to be detected.

However, this calibration approach faces practical challenges. Due to insufficient bandwidth,
RGB-D cameras cannot simultaneously stream RGB and IR data, leading us to fix the
calibration pattern and the sensor and record separate data for the RGB and IR sensors for
each pattern pose. Subsequently, we move the calibration pattern multiple times to capture
the pattern in several poses. Merging these recordings and tampering with the timestamps to
simulate simultaneous RGB and IR detections is necessary to run the calibration processes.
This process is tiresome, unintuitive and becomes unfeasible in a more complex system, which
[ATOM] also supports. It was carried out to enable the comparison with other approaches.

Considering the resolution of both simulated and real cameras as 640 x 480, percentage
errors for both coordinates are calculated. For simulated data using RGB and depth pairs
(3D), we observe errors of 0.14 % for the x direction and 0.23 % for the y direction. In real
data, errors amount to 0.23 % for the z direction and 0.32 % for the y direction. Furthermore,
we assessed errors in the factory calibration of the Asus Xtion using real data from the driver
of the camera and obtained calibration errors of 8 pixels. Factory errors amount to 0.1 % in
the x direction and 0.8 % in the y directions. This error is significantly high, especially when
dealing with applications that require high precision such as data fusion. This demonstrates

that our methodology is effective in improving factory calibration for RGB-D cameras.

Table 4.3: Pairwise errors for depth-to-RGB sensors evaluation in pixels.

Method Simulation Real Data
€rms € Y  Erms € Yy

Factory - - - 8.38 4.64 5.07
OpenCV w/ intrinsics [141] M O 1 030 0.15 0.20
OpenCV w/o intrinsics [141] O O () 141 0.95 0.66
Kalibr w/ intrinsics [9)[36) ) @ @ 066 0.31 0.39
[ATOMI| IR w/ intrinsics () @ 1 031 0.16 0.21
[ATOMI IR w/o intrinsics () (U (1) 140 0.94 0.66

ATOMI 3D 1.79 092 1.11 290 1.45 1.52

(1) Simulation doesn’t produce IR data.

In a comparative analysis with other algorithms, [ATOM]| demonstrates performance on
par with [OpenCV]s RGB-to-RGB extrinsic calibration. Optimisation of intrinsic parameters,
which [ATOM]also supports, significantly enhances calibration performance for both algorithms.
When calibrating the IR-RGB pair with Kalibr [9][36], subpixel accuracy is achieved, but
with twice the error compared to the [ATOM] calibration. Kalibr’s calibration also optimises
intrinsic parameters.

When evaluating the pairwise errors in pixels, our methodology also outputs images with

the depth boundaries projected to the corresponding RGB from the same collection, as seen
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in Fig. .71 These images allow for a better visual understanding of the calibration accuracy.

Figure 4.7: Depth-to-RGB evaluation image output, where green points are the physical limits of
the pattern annotated in the RGB image, red points are the limits of the physical
board detected in the depth images, and yellow lines represent the distances between
corresponding points in depth and RGB.

To conclude, we would like to point out that, when using [ATOM] to calibrate an RGB-D
camera, we can use both the depth or the IR data to calibrate the depth_link. As expected,
the calibration using the IR data achieves a higher performance than using depth data, because
the detection of chessboards and Charuco in images is very accurate and 3D labelling of
depth data is less accurate due to a lower quality of the original data that is more affected
by external factors like illumination. Nevertheless, both methods highly improve factory

calibration.

4.3.2 Hand-Eye with Fixed Sensors

This subsection details the calibration results achieved when calibrating a complex system
that incorporates both mobile and fixed sensors. Fig. presents an illustration of this system.
It is constituted of an RGB-D camera fixed to the end-effector of a robotic manipulator, along
with three stationary sensors: a [LiDAR] an RGB sensor, and a depth sensor. During the
calibration procedure, we manipulate both the calibration pattern and the robotic manipulator
to acquire an array of collections that encompass various perspectives of the pattern and
diverse poses of the hand-eye camera.

Fig. shows the transformation for the above-mentioned system. In green, we can see
the nodes that represent the frame ID from which data is output and the arrows that are
associated with that sensor’s calibration. In blue are the dynamic transformations of the
system: the whole kinematic chain of the robotic manipulator, at the left of the figure, and
the pattern, which moves from collection to collection, to guarantee that the dataset is diverse

with several poses and points of view.
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Figure 4.8: Illustration of the system to be calibrated, where red ellipses represent depth cameras,
yellow ellipses represent [[IDARE, and blue ellipses represent RGB cameras.

Table [£.4] summarises the datasets used for calibrating the robotic system, including results
from both simulated and real-world data. This system’s complexity leads to a significant
number of incomplete collections, particularly in real-world scenarios. Several factors impact
the data quality, such as lighting conditions, sensor interference (notably with depth cameras),
and the distance between the cameras and the calibration pattern. These challenges contribute
to the prevalence of partial detections in the RGB sensors. The distance between the cameras
and the pattern further affects detection quality.

Table 4.4: Descriptions of the datasets used in this experiment. "RGB partials" indicates the number

of partial detections of the calibration pattern by the RGB sensors, while "complete" refers
to collections where the calibration pattern was detected by all seven sensors.

Data Dataset # collections # RGB partials # complete

imulati train 22 4 22
stouiation test 10 2 9
roal train 29 58 11
o test 13 2% 5

The real-world setup was deployed in our laboratory, featuring artificial ceiling lights
and minimal natural light interference, although some variability in lighting occurred due to
natural daylight. The robotic manipulator was placed on a stable surface, and its end-effector-
mounted RGB-D sensor was moved using automated trajectories. The calibration pattern was
positioned at different locations within the field of view of the fixed sensors and robot arm.
Pattern distances ranged from 1m to 3m. We acquired 29 training collections and 13 testing
collections, each corresponding to a distinct scene or pattern pose. Variability in data quality
occurred due to ambient light, depth sensor interference (especially between structured light

systems), and sensor-to-pattern distance. This setup aimed to emulate realistic calibration
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Figure 4.9: Transformation tree for the robotic system to be calibrated. Blue arrows represent
dynamic transformations. Green arrows represent the transformation that will be
calibrated during optimisation. The red node represents the calibration pattern and the
green nodes represent the sensor links from which data is output.

challenges in heterogeneous multi-sensor systems. Table [4.4] provides a breakdown of complete
and partial pattern detections.

Following the same line of thought as in the RGB-D calibration, first, we calibrated the
simulated system to prove our concept with precise ground truth. To calibrate, we induced
an error of 0.1 m and 0.1rad to the initial guess transformations for the links in the system.
Table [4.5] provides an assessment of the calibrated transformations by comparing the obtained
transformations to the ground truth values for simulated results. It outlines the displacement
between the ground truth and the obtained transformations for all the links to be calibrated,
highlighted in green in Fig. providing data on translation, rotation, and displacement
along the X, Y, and Z axes, as well as Euler angles in the form of ¢, 6, and . These values
serve as a reference for evaluating the accuracy of the calibration process, allowing for a
comparison of the calibrated transformations with the ground truth. Overall, the low values
for both translation and rotation discrepancies, as well as for the displacement and rotational

angles, demonstrate the high quality of the calibration. The calibrated transformations closely
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match the ground truth values, ensuring precise alignment of the sensors in the simulated
environment. This level of accuracy is crucial for applications where sensor data needs to be

combined or where precise sensor positioning is required, such as in robotics and data fusion.

Table 4.5: Ground truth evaluation of calibrated transformations for simulated results.

From To t (m) R (rad) X (m) Y (m) Z (m) ¢ (rad) 0 (rad) ¢ (rad)

big beam 1 camera 1 link 0.0085 0.0061 0.0006 0.0047 0.0066 0.0001 0.0040 0.0046
hand camera link hand camera depth frame 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
hand camera link hand camera rgb frame ~ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
rectangular beam lidar 2 0.0109 0.0090 0.0102 0.0037 0.0010 0.0048 0.0052 0.0056
big beam 1 camera 2 link 0.0101 0.0065 0.0021 0.0098 0.0013 0.0022 0.0032 0.0052

Table displays pairwise Root Mean Square Error (RMSE) of various sensor pairs in
pixels, offering valuable insights into the accuracy of extrinsic sensor calibration. The sensor
pairs are a combination of RGB, depth and [LiDARI sensors, both in a simulated and real
data context. Notably, the RMSE] values in the simulated data scenario range from 0.70 to
2.28 pixels, showcasing the precision of calibration between different sensors. In the real data
setting, the [LARCC] values are slightly higher, varying from 3.45 to 6.53 pixels. These values
reflect the discrepancies in sensor alignment in both simulated and real-world environments.
The "average' row provides a useful summary of the overall calibration accuracy for the entire
set of sensor pairs. This table serves as a critical reference for evaluating the quality of sensor

calibration, which is crucial in various applications, such as robotics and computer vision.

Table 4.6: Pairwise root mean square errors of sensor pairs in pixels.

Sensor Pair Target Sensor Simulation Real Data
camera 2 rgb hand camera rgb 0.70 3.72
lidar camera 2 rgb 1.78 5.57
lidar hand camera rgb 2.09 5.35
lidar camera 1 depth 1.87 4.08
lidar hand camera depth 1.93 5.34
camera 1 depth camera 2 rgb 2.28 4.22
camera 1 depth hand camera rgb 2.21 3.45
hand camera depth camera 1 depth 1.52 3.58
hand camera depth  camera 2 rgb 1.58 6.53
hand camera depth  hand camera rgb 1.69 4.40
average 1.77 4.67

The results show a clear variation in calibration performance across different sensor pair
types, which can be attributed to their sensing modalities and the accuracy of pattern detection.
In both simulated and real environments, RGB-to-RGB calibration pairs, such as camera 2
rgb to hand camera rgb, yield the lowest [LARCC values (e.g., 0.70 pixels in simulation and
3.72 pixels in real data). This performance is primarily due to the high precision of 2D pattern
detection in RGB images, where Charuco markers can be located with sub-pixel accuracy.

In contrast, sensor pairs involving depth or LiIDAR, such as lidar to hand camera depth or
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camera 1 depth to camera 2 rgb, exhibit higher [LARCC] values. These sensors often suffer
from lower spatial resolution and higher sensitivity to ambient conditions like lighting and
surface reflectance, leading to noisier pattern boundaries.

Another factor contributing to performance variability is the difference in detection
strategies across modalities. While RGB sensors rely on image-based marker detection,
depth sensors and [[IDAR] require geometric interpretation of surface discontinuities or board
contours, which are often less reliably segmented. Furthermore, the temporal and spatial
alignment of captures in real-world setups may introduce additional minor inconsistencies,
especially when bandwidth or hardware constraints force sequential rather than synchronous
acquisition. Overall, the ATOM]| framework achieves strong performance in heterogeneous
setups, particularly when using IR data for depth calibration or when combining sensors with
more precise detection capabilities. Nevertheless, results highlight that achieving sub-pixel
calibration with modalities like LIDAR-depth pairs remains a challenge due to inherent sensing

limitations.

4.4 FINAL CONSIDERATIONS

In this chapter, we have presented a comprehensive methodology for the extrinsic calibration
of a diverse set of sensors, including RGB, depth, and [[IDARI sensors, both in simulation
and real-world scenarios. The results indicate that the proposed approach can effectively and
accurately calibrate these sensors, providing essential data for various applications in robotics
and computer vision. We have demonstrated that our methodology substantially improves
RGB-D factory calibration. The calibration results show low root mean square errors for
both systems, confirming the reliability of the methodology. We have also demonstrated that
[ATOMI is capable of calibrating a complex combination of dynamic and static sensors.

Overall, this study provides a robust foundation for the calibration of sensors in a range
of scenarios and paves the way for advancements in the field of sensor fusion and perception

in robotics and computer vision.
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CHAPTER

Multi-View 2D to 3D Lifting
Video-Based Optimisation: A
Robust Approach for Human Pose
Estimation with Occluded Joint

Prediction

5.1 INTRODUCTION

3D human pose estimation is essential for human-robot collaboration, as it equips robots
with the ability to comprehend and respond to human movements in a three-dimensional
space. This technology facilitates seamless and intuitive interactions by enabling robots to
interpret gestures, body language, and spatial relationships. Accurate pose estimation ensures
precise coordination between humans and robots, enhancing safety and efficiency in shared
workspaces [142], [143]. It allows robots to adapt their actions based on human poses, allowing
smoother collaboration in diverse applications such as manufacturing, healthcare, and assistive
robotics [142], [144]. Thus, it forms a fundamental bridge for effective communication and
cooperation between humans and robots, promoting a productive collaborative environment.

However, despite the advances in 3D human pose estimation, current methods often
struggle to handle occluded joints effectively. Occlusions occur when certain body parts
are temporarily hidden from view, challenging the ability of the algorithm to predict the
complete pose accurately. Occlusions can be caused by either an object in front of the human
or by the human itself (self-occlusions) when part of the body occludes certain joints. In the
context of human-robot collaboration, predicting occlusions becomes crucial. When robots
cannot accurately perceive occluded joints, it may lead to misinterpretations of human actions,

potentially resulting in errors or accidents. For instance, if a robot fails to recognise that an
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arm of the person is temporarily hidden behind an object, it might misunderstand the intended
action, impacting the collaborative task. Therefore, developing robust algorithms that can
predict and account for occluded joints is paramount for enhancing the reliability and safety
of human-robot collaboration scenarios. It ensures that the robot can adapt appropriately
even when parts of the human body are temporarily occluded, contributing to a more effective
and secure collaborative environment.

To address the limitations identified in Chapter2, particularly the challenges of occlusion,
reliance on single-frame inference, and lack of individual-specific modelling, this manuscript
introduces a novel approach to 3D human pose estimation, summarised in Fig/5.1] Building
upon the insights from recent literature, we employ a 2D-to-3D lifting optimisation technique
that leverages temporal information from multiple video frames. Unlike traditional single-
frame methods discussed in the literature review, our approach integrates temporal consistency
to enhance robustness against joint occlusions. By analysing consecutive frames, the algorithm
improves the prediction of occluded joints and maintains spatial coherence. Furthermore, we
incorporate subject-specific skeletal information to tailor the 3D reconstruction, addressing
another gap highlighted in Chapter [2| regarding the generalisation limits of current models.
This dual strategy, temporal integration and skeleton-specific modelling, enables a more
accurate and resilient estimation of human poses, especially under occlusion and variation
in morphology. We evaluate our framework on a representative 3D human pose estimation
dataset, the MPI-INF-3DHP Dataset [10], and present comparative results with other state-
of-the-art methods. A vided!] has been made available that includes a brief explanation of
the methodology and some qualitative results. The contributions of this chapter can be
summarised as follows:

e to propose a multi-camera video-based 3D human pose estimation algorithm;

e to predict accurately the position of occluded 3D joints;

e to compare with other 3D human pose estimation state-of-the-art approaches.

"https://youtu.be/EiUbGgs2Wsk
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Figure 5.1: Schematic representation of the proposed approach. The main framework is divided
into three key components: the reprojection component, the link length component,
and the frame-to-frame component. The reprojection component aims to minimise the
distance between the projection of the 3D joints and their 2D detections. The link length
component aims to uniformise the tridimensional link length in all the frames. The
frame-to-frame component helps predict the position of occluded joints using the position
of the same joint in adjacent frames.

5.2 METHODOLOGY

The proposed video-based optimisation approach uses the least-squares method to deter-
mine the 3D position of each joint in a predefined skeleton. This approach uses 2D to 3D
lifting, meaning that it assumes that the 2D poses are known in certain images (in pixels)
and also requires the extrinsic parameters of the cameras in the system.

Besides the information from the 2D keypoints, our approach uses temporal information
that helps detect occluded joints while trying to predict the movement of the occluded joint by
extrapolating from frames where that joint was previously seen. It integrates knowledge from
the anatomical configuration of the human skeleton by aiming to homogenise the estimated
three-dimensional length of each skeletal link across all frames. More precisely, the objective
is to ensure uniformity in the three-dimensional length of each link across the entire sequence
of frames.

The optimisation problem is solved using a nonlinear least squares method. This algorithm

2

aims to find the parameter vector 6 that minimises the sum of squared residuals Q(0) = i, 77,

where r; = y; — f(x;,0) represents the difference between the observed data y; and the model
prediction f(z;,0), where x; represents the input features or predictors used in the model to
make predictions. The Jacobian matrix J is a key component, containing partial derivatives

of the residuals with respect to the parameters: J;; = %22' The nonlinear least squares
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method iteratively updates the parameter estimates using the linearised system of equations
represented by eq. [5.]]
Ops1 = Op — (JTT) LIy | (5.1)

where JT is the transpose of the Jacobian matrix, and r is the vector of residuals. This update
rule adjusts the parameter estimates in the direction that reduces the sum of squared residuals,
and the process is repeated iteratively until convergence is achieved. The final 6 represents
the optimal parameter that provides the best fit of the nonlinear model to the observed data.
The optimisation is handled as a sparse problem because the parameters do not influence all
of the residuals, and it is solved with the trust region reflective algorithm [145], which is a

suitable method for large bounded sparse problems.

5.2.1 Objective Function

We aim to estimate the 3D coordinates, X,Y, Z, for each joint j and each frame f, by
minimising an objective function composed of three main error components: the reprojection
error (erp), the link length error (ey), and the frame-to-frame temporal error (ess). These
terms ensure, respectively, consistency between projected and observed 2D points, anatomical
plausibility of the estimated skeleton, and temporal smoothness across frames. The objective

function is formally defined as:

fobj = argmin Zell + ZZ (erp + €ff) . (52)
!

(XY, Z)55 j
The error components are detailed as follows.

Reprojection Error

In multi-camera systems for 3D human pose estimation, the reprojection function plays a
fundamental role in assessing and optimising the consistency between reconstructed 3D joint
positions and their corresponding 2D observations across multiple views. The basic principle
is that a 3D point in the world, when projected onto a calibrated camera’s image plane, should
ideally coincide with the observed 2D detection of that point in the image. Any deviation
between the projected 3D point and the actual 2D detection (obtained using either classical
or learning-based computer vision procedures that use the image as input) can be interpreted
as an error, often referred to as reprojection error.

This error provides a direct measure of how well the estimated 3D pose explains the set
of 2D detections. The reprojection function itself is defined by the camera projection model,
which encompasses both intrinsic parameters (e.g., focal length, principal point, distortion
coefficients) and extrinsic parameters (e.g., rotation and translation with respect to a global
reference frame). Together, these parameters define the mapping from a 3D point in world
coordinates to a 2D point in pixel coordinates on the image plane.

The reprojection error is defined as:

“re = Hpr0j<(X’ Y, Z)J%f’/\i) —djfi|| - ¢t s (5.3)
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where (X,Y,7); s, for each joint j, and each frame f, projected to the frame in question for
each camera image ¢, with the intrinsic and extrinsic parameters \;, and the coordinates 2D
detection of that joint, d; y; in pixel. The confidence value for each joint in each frame and
camera c; r; is also used as a multiplying factor for the reprojection residuals, highlighting
joints that have high confidence detection values. The confidence value is provided by the 2D

detector.

Link Length Error

An essential physical constraint in 3D human pose estimation is the assumption of constant
bone lengths across time. Human limbs can bend at joints, but the skeletal link between any
two adjacent joints (e.g., shoulder to elbow, hip to knee) has a fixed anatomical length for a
given individual. To ensure anatomical plausibility and temporal consistency of the estimated
poses, this constraint is enforced via a link length residual term in the objective function.

The link length residual measures the deviation of the estimated 3D link lengths from
their average value over time. It penalises temporal fluctuations in bone length, which may
arise due to noise in 2D detections, camera calibration inaccuracies, or imperfections in the
reconstruction algorithm. By minimising this residual, the optimisation process is encouraged
to produce temporally stable and physically consistent 3D skeletons.

Formally, the residual for a given skeletal link [ is defined as the standard deviation of its

estimated length over all frames:

Zf(lj,f - 7)2

2 , (5.4)

€l =

where:
e [; s is the Euclidean distance (i.e., the 3D length) between two joints defining link [ in
frame f,

« [ is the average length of that link over all frames,

e F'is the total number of frames.

This term acts as a regulariser, ensuring that for each skeletal link, its length remains
approximately constant across time. While it does not enforce a specific anatomical value, it
promotes internal consistency within the sequence, which is especially important in scenarios
with occlusions or ambiguous joint detections. This improves the robustness of the 3D

reconstruction by anchoring it to a biologically plausible structural prior.

Frame to Frame Error

Another component of the optimisation process in multi-frame 3D human pose estimation
is the frame-to-frame residual, which enforces temporal smoothness by penalising abrupt
changes in joint positions across consecutive frames. This term is particularly important for
improving estimation quality in the presence of occlusions, missing detections, or highly noisy
observations.

The frame-to-frame residual is defined as:
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1(X,Y,2);r— (X,Y,Z)j¢-1] if j occluded
eff = (5.5)
0 otherwise

where

e (X,Y,Z); s denotes the 3D coordinates of joint j in frame f,

e (X,Y,Z); -1 denotes the 3D coordinates of the same joint in the f — 1 frame.

The activation function is only activated when the joint is occluded or the inter-frame
displacement exceeds a predefined threshold (in this case, 150 mm). The rationale behind
this formulation is based on the assumption that, at sufficiently high frame rates, human
joints do not exhibit large displacements between consecutive frames. As such, sudden or
erratic movements in the reconstruction are likely indicative of detection failures or occlusions.
By introducing a residual that penalises large inter-frame differences for such cases, the
optimisation process is guided towards producing temporally coherent and kinematically
plausible trajectories.

The threshold value of 150 mm aligns with the evaluation metric used in the 3DPCK (3D
Percentage of Correct Keypoints) benchmark [10], where a keypoint is considered correctly
localised if it lies within 150 mm of the ground truth. This threshold ensures that the frame-
to-frame constraint does not interfere with normal joint movement, preserving natural motion
while only activating when discontinuities (that could otherwise only be explained by extremely
fast movement, which is not plausible) arise.

By incorporating es; into the overall cost function, the model benefits from a temporal
regularisation that complements spatial constraints (e.g., reprojection error and link length
consistency). This leads to smoother, more realistic motion sequences, and provides a
mechanism for estimating occluded joints based on previous valid positions, thus improving

the robustness and reliability of the final 3D pose reconstruction.

5.3 INFERENCE SPEED IMPROVEMENT

To enable the deployment of the proposed multi-view 2D-to-3D lifting method in time-
sensitive robotic applications, a real-time adaptation of the original batch-based optimisation
algorithm was developed. This was motivated by the need for continuous and low-latency
pose estimation in collaborative scenarios, where robots must interpret and respond to human
motion instantaneously to ensure both functionality and safety.

The original method, which performs a global optimisation over an entire sequence of video
frames, was restructured into a sliding-window framework. In this variant, the optimisation
is performed on a fixed-length buffer of the most recent frames (typically five frames, as
a compromise in the speed—accuracy trade-off) updated incrementally as new frames are
acquired. Rather than recomputing the pose from scratch at each timestep, the previously
optimised 3D pose is used as the initial guess for the current frame. This recursive approach
significantly reduces convergence time while ensuring temporal coherence.

All three components of the original objective function were retained: the reprojection

residual, which ensures alignment between the estimated 3D joints and the detected 2D
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keypoints; the link length residual, which enforces physical consistency across frames; and
the frame-to-frame residual, which acts as a temporal prior to improve robustness in cases
of occlusion or uncertain detections. In the real-time implementation, the frame-to-frame
residual takes on added importance, as it allows the algorithm to infer joint trajectories even
when direct visual data is temporarily unavailable.

One of the primary challenges during this adaptation was achieving sufficient time efficiency.
In early tests, optimising five frames without the link length and temporal smoothness terms
required approximately 2.5 seconds per frame. Through progressive refinements, including
algorithmic simplification and more effective initialisation, the full version, with all residuals
active, now achieves processing times ranging from 150 to 750 milliseconds per frame, depending
on the frame’s complexity and visibility conditions. While this range does not yet support
real-time performance at video frame rates (e.g., 30 Frames per Second (fps)), it represents a
significant improvement and brings the method within reach of interactive, frame-by-frame
applications in robotics.

The adapted system was integrated into a ROS-based architecture, enabling direct com-
munication between the pose estimation module and other components of a robotic system.
Each camera provides synchronised 2D keypoints, which are fed into the optimiser, and the
resulting 3D skeleton is immediately available for downstream tasks such as robot trajectory
planning, proximity detection, or adaptive behaviour modeling.

In summary, the real-time variant of the algorithm preserves the strengths of the original
approach while addressing its practical limitations. By shifting to a recursive, windowed
optimisation strategy and incorporating all three residual components, the system maintains
robustness to occlusions and noise while moving towards operational viability in real-world

robotic environments

5.4 ROS INTEGRATION

To enable real-time operation of the proposed 3D [HPEl methodology within robotic
environments, the full pipeline was adapted to the framework. This integration allows
for modular, synchronised processing of image data from multiple cameras, the dissemination
of keypoint and pose information, and visual feedback through standard visualisation
tools.

The integration begins with the creation of a dedicated node that subscribes to
camera image topics, specified dynamically via arguments, and processes these streams using
the MediaPipe [146] library to detect 2D keypoints. The node continuously publishes the
results in a customised message format for each camera, making the data accessible to the
rest of the system.

To represent the detected keypoints in 2D, a custom message keypoint2D.msg was defined
as follows:

Each keypoint contains 2D image coordinates and a confidence score. These are grouped

into a person2D.msg message, defined as:
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float32 x
float32 y
float32 score

Code 1: Structure of keypoint2D.msg.

Header header
keypoint2D[] keypoints

Code 2: Structure of person2D.msg.

This message is published on a dedicated /camera_id/skeleton topic for each camera. A
second node subscribes to these topics and aggregates the information in a global dictionary
indexed by camera ID. This architecture enables flexible scaling to arbitrary numbers of views.

The robot model is instantiated via a zacro file, ensuring proper structural configuration
within the ecosystem. Intrinsic parameters for each camera (including focal lengths,
distortion coefficients, and image dimensions) are read from CameraInfo topics and stored in
a dictionary for subsequent use. Extrinsic parameters, which were previously obtained with
the [ATOM] calibration framework, are retrieved from the tf transformation tree, enabling
accurate spatial localisation of each camera within the system.

For 3D reconstruction, a separate set of custom messages is used to represent poses in

space. The fundamental unit is the keypoint3D.msg:

float32 x
float32 y
float32 z
float32 score

Code 3: Structure of keypoint3D.msg.

These are grouped into a person3D.msg, published as follows:

Header header
keypoint3D[] keypoints

Code 4: Structure of person3D.msg.

The estimated 3D skeletons are published in real-time, and visualised through
visualization_msgs/MarkerArray objects in RViz. Each marker encodes the spatial struc-
ture of the human body using a fixed skeleton topology.

One of the principal challenges lies in ensuring temporal synchronisation across asyn-
chronous camera streams. As individuals move through the scene, 2D detections may inter-
mittently fail, either due to occlusion or subjects exiting a camera’s field of view. To address
this, a mechanism was implemented to assign frame indices to incoming detections and verify
whether a sufficient number of valid 2D keypoints (from at least two cameras) are available
for triangulation and optimisation within that timestamp. This is a non-trivial aspect of
the system, as effective frame index synchronisation remains a limiting factor under partial

visibility and frame drops.
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Once the necessary conditions are met, a series of verification steps are performed before
initiating the optimisation routine. Residuals are constructed to model reprojection errors,
and a non-linear optimisation is executed to estimate 3D poses. When successful, the results
are published using the aforementioned person3D messages and visualised in RViz using the
skeletal marker structure.

Crucially, this[ROSlbased integration supports seamless deployment of the [HPE] framework
within the [LARCC collaborative cell described in previous chapters. It enables real-time
monitoring and pose estimation within human-robot interaction scenarios, aligning with the
operational requirements of collaborative workspaces. However, due to the absence of a ground
truth reference in the deployed environment, the system currently cannot be used to conduct
formal accuracy evaluations. While qualitative assessments of pose plausibility can be made,
quantitative benchmarking remains limited, representing a key area for future development,
potentially through the inclusion of motion capture or depth-based ground truth systems.

In summary, the integration facilitates real-time, modular, and extensible deployment
of the [HPEl methodology within collaborative robotics contexts, while also highlighting
important limitations in synchronisation and accuracy assessment that must be addressed in

future work.

5.5 TESTS AND RESULTS

This section presents the results and experiments developed to prove the accuracy of our
method. We present comparative results and three separate experiments where we evaluate
the impact of the initial 2D detection noise, the number of occluded joints, and the number of

cameras.

5.5.1 Dataset and Metrics

For all the tests and evaluations presented in this manuscript, we use the MPI-INF-3DHP
dataset [10], a widely adopted benchmark for 3D human pose estimation. This dataset
features both indoor and outdoor recordings of diverse actions performed by multiple subjects,
captured with markerless motion capture systems. It includes data from 8 synchronised
cameras positioned at different viewpoints, along with corresponding 2D and 3D ground-truth
annotations, enabling rigorous evaluation under varying perspectives and conditions. The 2D
keypoints used in our experiments are projected from four camera views (cameras 0, 4, 5, and
8) of the MPI-INF-3DHP dataset, chosen to represent diverse viewpoints, as illustrated in
Fig. As the skeleton model, we adopt the MPI-INF-3DHP skeleton structure, consisting
of 23 joints, illustrated in Fig. This configuration ensures consistency with the dataset’s
annotation scheme and facilitates reliable benchmarking of our method.

To assess the performance of the algorithm, we use established evaluation metrics commonly

utilised in recent 3D human pose estimation articles: MPJPE (Mean Per Joint Position Error)
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Figure 5.2: Representation of the skeleton used in the experiments, where X represent joints.

Figure 5.3: Example of image set used in calibration from cameras 0, 4, 5 and 8 of the MPI-INF-
3DHP skeleton [10].

and 3DPCK (3D Percentage of Correct Keypoints). The MPJPE is represented by eq. (5.6)),

o J
X 3Py~ Pyl

f=0j=
MPJPE =
F-J ’

(5.6)

where P = (X,Y, Z). The MPJPE quantifies the average error per joint position, determined
by the Euclidean distance between the ground truth (X, Yy, Zg) and the estimated joint
positions (X ¢, Y] s, Z; f) for each joint j and frame f, divided by the total number of frames
F' and the total number of joints, J.

The 3DPCK is represented by eq. ,

3DPCK = J‘“’;"“t x 100 , (5.7)

where Jeorrect 18 the number of correct joints and J is the total number of joints. The 3DPCK
measures the percentage of correctly identified 3D keypoints. A detection is a true positive if
the Euclidean distance between the estimated joint position and its corresponding ground
truth falls within a specified threshold. In alignment with standard practices from other

state-of-the-art approaches, we applied a threshold value of 150 mm like suggested in [10].
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Table 5.1: Comparative analysis with other 2D to 3D lifting state-of-the-art methodologies on the
MPI-INF-3DHP [10] dataset.

Methodology |Optimization Multi-view Video MPJPE |

Kocabas et al. [97] v 109.0
Bouazizi et al. [108] v v 93.0
Pavvlo et al. [104] v 86.6
Bouazizi et al. [9§] v 65.9
Jiang et al. [100] v 55.2
Zhao et al. [94] v 27.8
Yu et al. [95] v 27.8
Ours (20px) 36.4
Ours (10px) v v v 18.1

These metrics collectively provide a comprehensive evaluation of the accuracy of the algorithm

in estimating 3D human poses.

5.5.2 Comparative Analysis

Table presents a comparative analysis of the proposed methodology with other state-
of-the-art algorithms on the MPI-INF-3DHP dataset [10]. The evaluated algorithms include
Bouazizi et al. [108], Bouazizi et al. [98], Kocabas et al. [97], Jiang et al. [100], Yu et al. [95],
and Pavvlo et al. [104] as benchmark references.

We restrict our comparison to state-of-the-art 2D-to-3D lifting approaches, as these most
closely align with the core assumptions and methodological scope of our proposal, namely
that 2D keypoints are available as input and the goal is to reconstruct their 3D counterparts.
To assess the robustness of our approach under realistic detection uncertainty, we simulate
two levels of error, 10 and 20 pixels, in the 2D input keypoints by adding Gaussian noise
to the ground-truth 2D joint locations. This choice is motivated by the observation that
although modern 2D keypoint detectors typically achieve sub-10-pixel precision, performance
can degrade in more complex settings, particularly under occlusion or motion blur. Including
the 20-pixel condition allows us to stress-test the model and highlight its behaviour under
more challenging, yet still plausible, circumstances. These controlled perturbations offer
a consistent and reproducible means to evaluate how different lifting methods respond to
degraded input accuracy, thereby facilitating a fair and focused comparison.

Our algorithm outperforms all other methodologies in MPJPE values. The MPJPE stands
at 18.06 for a 10-pixel error scenario and increases to 36.40 for a more challenging 20-pixel
error scenario. These results prove the robustness and accuracy of the proposed approach,
demonstrating its efficacy in achieving accurate 3D human pose estimation under conditions
with varying degrees of 2D pixel errors.

Our approach exhibits state-of-the-art performance for several key reasons, setting it apart
from existing methodologies. One factor is the use of a video-based approach. Our algorithm
improves the simple reprojection function by taking into account how human poses change

between frames by using the frame-to-frame approach. Utilising information from multiple
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frames enables our algorithm to gather context and refine estimations by considering the
consistency of pose configurations across frames. This not only improves the robustness but
also enhances the ability to handle dynamic and occluded complex movements.

Furthermore, our approach relies on the unique characteristics of each human skeleton. The
link length component of the objective function (see section will estimate different link
lengths for each human. By tailoring the optimisation process to the individual characteristics
of skeletons, our algorithm achieves a higher degree of precision. This customised optimisation
contributes significantly to mitigating errors and enhances the overall accuracy of 3D pose
estimations by guaranteeing that the link length does not change in different frames.

The proposed approach, using 2D detection with a 10-pixel error, gives the best results
overall. It is followed by Yu et al. [95] and Zhao et al. |[94]. These good results may be related
to the fact that all the mentioned approaches are video-based, which allows to improve 3D

poses by leveraging information from all the frames.

5.5.3 Impact of 2D Joint Detection Error

The following experiment evaluates the impact of the 2D joint detection pixel error on the
3D joint results. The test set consisted of 500 frames (roughly 20s) from the MPI-INF-3DHP
[10]. To evaluate the impact of the quality of 2D keypoint detection on the outcome, we used
the 2D ground-truth keypoint values as input. We added a systematic absolute pixel error to
all the keypoints in a random direction. The added error varied from 0 to 100 pixels. The test
dataset did not include any occluded joints, and the optimisation used 4 of the 8 available
cameras.

Fig.[5.4] shows a plot of the evolution of the indicators MJPJE and 3DPCK indicators with
the increase of the 2D joint detection error. It presents an analytical view of the correlation
between 2D joint detection errors and the subsequent impact on the detection of human 3D
poses. The MJPJE, illustrated by the ascending orange curve, shows a gradual increase in
millimetres as 2D joint errors in pixels rise. This positive correlation underscores the sensitivity
of 3D pose predictions to inaccuracies in 2D joint localisation. The trend suggests that as the
precision of 2D joint detection diminishes, the accuracy of predicting the spatial positions of
joints in the 3D space becomes compromised. The 3DPCK, represented by the descending blue
curve, reflects the percentage of accurately estimated 3D keypoints in relation to increasing
2D joint errors. The decline in 3DPCK underscores a more pronounced sensitivity to higher
2D detection errors.

Nevertheless, the algorithm demonstrates robust performance up to a 2D joint detection
error of 25 pixels. Within this range, both the MJPJE and 3DPCK show favourable behaviours.
The MJPJE remains relatively low, up to 50 mm, indicating an accurate prediction of 3D
joint positions, while the 3DPCK remains consistently high, demonstrating a high percentage
of correctly estimated keypoints.

Up to the 25-pixel threshold, the algorithm effectively compensates for minor inaccuracies
in 2D joint detection, showcasing resilience to moderate 2D detection errors. Beyond 25 pixels,
however, the performance trends diverge, with both MJPJE and 3DPCK responding more

sensitively to increasing 2D joint errors.
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Figure 5.4: Impact of 2D joint detection error in detection of human 3D poses. A detailed explanation
of the indicators can be found in section [5.5.1}

5.5.4 Impact of Occlusions

This subsection aims to determine the robustness of the algorithm to occlusions. For this,
we designed two different experiments: one where we randomly occluded an increasing number
of 2D joints that served as input for optimisation; in the second experiment, we occluded the
same joint in all cameras for a period of time and evaluated how precisely the position of that

joint was being predicted.

Random Occlusions

This experiment aims to assess the influence of 2D joint occlusions on the prediction
of 3D joint values. The test set contains 500 frames from the MPI-INF-3DHP dataset
[10]. To simulate occlusions, we systematically remove keypoints from the ground-truth 2D
keypoints. The quantity of deleted keypoints per frame and point-of-view ranged from 0 to
15. Additionally, an absolute error of 10 pixels was added to each ground-truth keypoint
value. This controlled variation in occlusion and error scenarios allows for a comprehensive
evaluation of the robustness of the algorithm under realistic conditions.

Fig. shows the results obtained from the experience mentioned earlier. Comparative
analyses evaluate the efficacy of a simple reprojection function, optimised through the least
squares method (plots with the tag ,eproj), against our proposal.

In the MJPJE plot, our algorithm (denoted as "MJPJE") consistently outperforms the
reprojection function ("MJPJE,¢pr;"), particularly with higher occurrences of occluded joints.

The stability in MJPJE values for our methodology signifies very good precision in joint
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Figure 5.5: Impact of occluded 2D joints in the detection of human 3D poses, where simple lines
represent the performance of our proposal and marked lines represent the performance

of an optimisation using only the reprojection of 3D coordinates to 2D images as the
objective function.

position estimation, even in highly occluded scenarios, with the performance of the algorithm
maintaining resilience.

In the 3DPCK plot, our algorithm (denoted as "3DPCK") shows higher correctness
percentages, even with a substantial number of occluded joints. In contrast, the reprojection
approach ("3DPCK,¢pr0;") evidences a decline in correctness with escalating occluded joints,
highlighting the efficacy of our algorithm in sustaining keypoint accuracy under challenging
occlusive scenarios and significantly improving the performance of the reprojection function.

In conclusion, the figure successfully demonstrates that our proposal greatly improves
the reprojection function, particularly in scenarios where joints are occluded. The observed
stability in performance highlights the robustness and potential of our solution, enhancing its

utility for precise 3D human pose estimation within intricate real-world scenarios.

Consistent Occlusions

This experiment evaluates the impact of occluded joints in all points of view for a period
of time in 3D joint poses. For this, the dataset used, for each 10 normal frames, had 5 frames
where the left elbow was occluded in all cameras. The dataset also had 10 pixels of 2D joint
error in every joint. The obtained MJPJE was 18.08 mm and 100 % 3DPCK. Regarding the
left elbow, the 3D joint error was 20.30 mm, which is slightly above average but demonstrates

that the position of that joint was well predicted by the proposed approach.
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5.5.5 Impact of Number of Cameras

This experiment intends to determine the impact of the number of cameras used to optimise
the quality of the 3D human poses. The test set contains 500 frames from MPI-INF-3DHP
[10]. We chose a test set with frames with 5 randomly occluded joints and 10 pixels of error.

Table [5.2] shows the results obtained when calibrating the same dataset with a varying
number of cameras. We can conclude that even with the constraint of optimising only 2
cameras, the performance remains robust. The MPJPE is 47.4 mm, indicating good precision
in estimating joint positions. The 3DPCK is registered at 96.2 %, a very good accuracy
considering the limited number of cameras. As the number of cameras increases to 3 and 4,
the precision further improves, as is evident in the reduced MPJPE values (13.8 and 11.6,
respectively) and the 100 % 3DPCK accuracy. This analysis emphasises the resilience of the
algorithm, demonstrating good performance even in scenarios where only two cameras are
utilised.

Table 5.2: Impact of the number of cameras in the MPJPE (mm) and 3DPCK (%) in the MPI-INF-
3DHP dataset.

# cameras MPJPE | 3DPCK 1

2 474 96.2
3 13.8 100
4 11.6 100

From a practical standpoint, these results have significant implications for real-world
applications. The ability to achieve accurate 3D human pose estimation with only two
cameras makes the system more feasible and cost-effective for deployment in real-world
scenarios, where the number of available cameras might be limited. The method’s robustness
in low-camera scenarios enhances its versatility and potential for broader adoption across
different fields and use cases. Additionally, the point of view of the cameras also influences
the quality of detection, as optimal camera placement can further enhance the accuracy and

reliability of the system.

5.5.6 Experimental Results with Synthetic ROS Integration

To evaluate the performance of the proposed 3D human pose estimation pipeline within
the framework, a synthetic testing procedure was developed based on the MPI-INF-
3DHP dataset [10]. Given that the ROS-based system is primarily designed for real-time
applications and lacks built-in mechanisms for offline benchmarking, a controlled dataset
replay strategy was implemented to emulate real-time operation while enabling consistent
input and replication.

A dedicated Python script was developed to convert a subset of the MPI-INF-3DHP dataset
into a rosbag file. This conversion involved assigning artificial yet synchronised timestamps
to ensure cross-camera temporal alignment. The RGB images from four camera perspectives
(camera_0, camera_4, camera_5, and camera_8) were saved as sensor_msgs/Image messages,

along with corresponding intrinsic calibration data via CameraInfo topics. In parallel, the
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associated 2D poses, extracted using the MediaPipe [146] library, were written into a custom
person2D message and published on individual skeleton topics for each camera.

This setup allowed the entire integration to function as if it were receiving real-
time data, including skeleton detection, inter-camera synchronisation, 3D triangulation,
optimisation, and RViz-based visualisation. The approach effectively bridges dataset-based
testing with real-time architecture, enabling reproducible and systematic testing of the
pipeline components.

Figures |5.6| and illustrate the reconstructed 3D skeletons corresponding to two sample
poses. The top panels show the synchronised views from the four cameras, while the bottom
panels depict the 3D skeleton rendered in RViz. In both examples, the reconstructed skeleton

appears spatially coherent and dynamically plausible, demonstrating the integration’s potential

for use in collaborative robotics contexts.

Figure 5.6: RViz visualisation of the reconstruction of a dynamic warrior-like pose using synchronised
images from four cameras. The bottom panel shows the estimated 3D skeleton in RViz,
generated from MediaPipe 2D keypoints processed through the ROS pipeline.

While this setup does not incorporate the ground-truth annotations available in the original
MPI dataset, it provides a valuable and realistic context for evaluating the coherence and
stability of the reconstructed 3D poses. The assessment conducted is therefore primarily
qualitative, focusing on the visual plausibility and consistency of the skeleton across views and
time. Future developments may explore complementing this analysis with offline comparisons
or integrated overlays, further enhancing the validation process.

This synthetic evaluation nevertheless provides a valuable intermediary step between
offline model testing and real-time deployment in collaborative robotics scenarios, such as the
cell described in earlier chapters.
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Figure 5.7: RViz visualisation of the reconstruction of a T-pose from the MPI dataset using the
synthetic ROS rosbag. The estimated 3D skeleton (bottom panel) confirms consistent
pose inference from multi-view inputs.

5.6 FINAL CONSIDERATIONS

This chapter presented a comprehensive investigation into a 3D human pose estimation
framework designed for multi-camera environments, with particular emphasis on its deployment
in collaborative robotics contexts. Building on accurate 2D keypoint detection and multi-view
triangulation, the proposed methodology was developed to be modular, robust to noise, and
suitable for real-time integration within robotic systems.

Extensive quantitative evaluation was carried out to assess the performance of the system
under varied conditions, including different levels of 2D joint detection error, partial occlusions,
and reductions in the number of available camera views. The results demonstrated that
the algorithm maintains high reconstruction accuracy even when confronted with significant
noise or occluded joints, highlighting its robustness and reliability. The method consistently
delivered stable and plausible 3D skeletons across a wide range of human poses, confirming
its applicability to real-world scenarios.

A key contribution of this work lies in the integration of the HPE pipeline within the [ROS
ecosystem. The system supports synchronised multi-camera processing, real-time publishing of
2D and 3D keypoints via custom messages, and visualisation in RViz. This architecture
enables deployment in live collaborative environments and facilitates interaction with robotic
agents. The use of synthetic bag files, constructed from a publicly available dataset with
artificially synchronised timestamps, enabled controlled testing of the complete pipeline in
realistic conditions.

Taken together, the proposed approach offers a reliable and extensible framework for human
pose estimation in robotics. It is particularly well-suited to applications requiring accurate
spatial perception and human-aware decision-making, such as those found in collaborative work

cells. The experimental evidence provided in this chapter underlines the method’s effectiveness
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and positions it as a solid foundation for future research on real-time, multi-person tracking,

dynamic scene understanding, and human-robot cooperation.
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CHAPTER

Conclusions and Final Remarks

6.1 OVERVIEW

This thesis addressed two fundamental challenges in collaborative robotics: (i) the accurate
extrinsic calibration of heterogeneous sensor systems, and (ii) the robust estimation of 3D
human pose using multi-camera RGB configurations. Motivated by the growing demand for
safer, more perceptually aware robotic systems in industrial and semi-structured environments,
the research combined geometric modelling, system integration, and experimental validation
to develop and evaluate novel contributions in both areas. Through the work presented in
Chapters (3| to [5] the thesis advances the state of the art in perception-driven collaboration
between humans and robots.

The thesis also revisited and addressed the research questions introduced in Chapter
demonstrating through its findings that both core objectives were effectively accomplished.
The proposed calibration framework confirmed the hypothesis that accurate, scalable extrinsic
calibration is feasible even under dynamic, multi-modal conditions. Likewise, the human pose
estimation pipeline validated the hypothesis that view redundancy and system calibration
significantly enhance 3D localisation in collaborative settings. These contributions support
the central thesis that perception systems must be not only technically precise but also

operationally adaptable in order to meet the demands of modern human-robot interaction.

6.2 SUMMARY OF CONTRIBUTIONS

Following the problem definition and motivation established in Chapter [I] this thesis
has addressed two fundamental perception challenges in collaborative robotics: the extrinsic
calibration of heterogeneous sensor setups and the estimation of 3D human pose using multi-
camera RGB systems. These capabilities were identified in Chapter [2| as critical enablers of
spatial awareness, safety, and interaction fluency in human-robot collaboration. The literature
review highlighted persistent gaps in current methodologies, particularly regarding the lack of
scalable calibration procedures for static and mobile sensors across RGB, RGB-D, and
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modalities [45], [66], and the difficulty of achieving reliable pose estimation under occlusion,
clutter, or partial calibration [11], [98], [117].

In response to these limitations, Chapter [3| presented an original calibration method
extending the [ATOM] framework [48] to support depth cameras and to integrate hand-eye
calibration into a unified, optimisation-based pipeline. The proposed system is designed for
ROS-based robotic platforms and supports flexible configurations involving fixed, mobile, or
robot-mounted sensors. It enables the estimation of extrinsic transformations in heterogeneous
and partially overlapping fields of view, addressing key scalability and modularity concerns
identified in the literature review [46], [47], [52].

Chapter (] established a rigorous validation protocol, combining synthetic datasets with
controlled real-world robotic deployments. The evaluation focused on translational and
rotational accuracy, robustness to motion, and repeatability across multiple sensor types.
Benchmarking against widely adopted toolkits, such as Kalibr [9] and the [ROS camera
calibration suite, demonstrated that the proposed approach achieves sub-centimetre precision
and superior stability under motion, a scenario where many traditional methods degrade [38],
[66]. Notably, the method proved effective in calibrating robot-mounted [LIDAR] and RGB-
D units without requiring strict synchronisation or shared calibration targets, overcoming
common deployment constraints in industrial settings.

Building on this calibrated perception backbone, Chapter [f] investigated 3D human pose
estimation in multi-camera RGB environments, with particular emphasis on its application
to collaborative workspaces. A comparative analysis of pose reconstruction pipelines was
performed, assessing triangulation strategies, robustness to occlusion, and runtime performance.
The findings confirm that calibrated multi-view systems significantly outperform monocular
approaches in terms of localisation stability and joint accuracy, especially in cluttered or
partially occluded environments, as discussed in the literature [96], [114], [126]. Furthermore,
the chapter highlighted the trade-offs between frame rate, processing load, and spatial
consistency, providing design guidelines for configuring perception systems in real-world
collaborative robotic cells.

Together, the contributions of this thesis demonstrate that scalable, multi-modal calibration
and robust 3D pose estimation are not only feasible, but also practically integrable in dynamic
robotic systems. The proposed methods bridge theoretical gaps identified in the state of
the art while delivering operational advances in accuracy, flexibility, and deployability. By
addressing core challenges in perception, this work contributes to the broader goal of enabling

safe, adaptive, and human-aware collaboration between robots and their human co-workers.

6.3 DISCUSSION

This thesis contributes to two core perception tasks in collaborative robotics: extrinsic
calibration of heterogeneous sensor configurations and multi-camera 3D human pose estimation.
This discussion revisits the implications of the work in light of ongoing technological trends,

the broader academic discourse, and future industrial demands.
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6.3.1 Calibration in Dynamic and Multi-Modal Contexts

The calibration framework developed in this thesis addresses an increasingly common
scenario in robotics: dynamic, multi-modal sensor arrangements that do not conform to
static or tightly integrated hardware setups. As collaborative and modular robotic platforms
proliferate, so too does the complexity of spatial configuration, making traditional, manual
calibration tools insufficient or impractical.

What distinguishes the proposed method from existing solutions is not only its accuracy but
also its attention to operational feasibility, integrating hand-eye calibration, supporting RGB-D
and [LIDATR] sensors, and aligning with workflows. By building on and extending [ATOM],
the work acknowledges the importance of leveraging existing structures while addressing
their limitations. In doing so, the research contributes to an emerging design philosophy in
robotics: that perception systems must be both technically rigorous and adaptable to fluid,
often unpredictable, working conditions.

These contributions are detailed in two of the thesis’s main publications. The journal
article published in Journal of Manufacturing Systems [140] presents the core calibration
framework and its validation in an industrial collaborative cell. A complementary article,
submitted to IEEE Access, further refines this framework by introducing new procedures
tailored to the calibration of depth sensors under motion. Together, these works advance the
state of the art in sensor fusion and contribute to the broader push for perception pipelines
that can support flexible, semantically aware robotic systems.

While the method has shown strong performance in controlled and semi-structured
environments, further testing is necessary in more adversarial conditions (e.g., outdoor
scenes, non-rigid mounts, or autonomous vehicle contexts). Nonetheless, the results clearly
demonstrate that high-accuracy calibration is achievable even when the assumptions of static

geometry or fixed sensor poses are relaxed.

6.3.2 Using Pose Estimation to Enable Human-Aware Collaboration

The second contribution of this thesis lies in analysing how human pose estimation methods
perform in multi-camera settings designed for robotic collaboration. Unlike conventional
vision applications, robotic systems require not only accurate human detection, but spatially
coherent, continuous tracking that can be trusted by the control system. The evaluation
in Chapter |5 goes beyond accuracy metrics to address issues of occlusion, visibility, and
triangulation geometry, factors critical for industrial application but often neglected in vision-
only literature.

This approach positions human pose estimation not as an isolated computer vision problem,
but as a perceptual foundation for context-aware robotics. By highlighting the advantages of
view redundancy and calibration fidelity, the thesis supports a paradigm in which multiple,
well-placed cameras offer not just more data, but better decisions. In safety-critical domains,
where failure to detect a human limb can result in injury, this level of precision is not optional.

Moreover, the experimental findings reinforce the interplay between hardware design (e.g.,

camera placement and number) and algorithmic strategy (e.g., keypoint detection and fusion).
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These results offer practical guidance to engineers designing collaborative workspaces and
underline the importance of calibrating perception systems as holistic ecosystems rather
than isolated components. This contribution has also been formalised and validated in a
peer-reviewed publication at the 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), which presents the developed multi-view lifting pipeline with
occluded joint prediction as a robust solution for pose estimation in cluttered and collaborative

environments [147].

6.3.3 Integration and Real-World Deployment Potential

A strength of this thesis is its commitment to bridging the gap between conceptual advances
and practical deployment. The open-source implementation of the calibration and estimation
tools, and their compatibility with standard robotic platforms, means they can be readily
tested, adapted, and scaled. This practical orientation strengthens the research’s impact and
speaks to the demands of applied robotics research, where reproducibility and integration are
as valued as innovation.

The work also responds to the growing consensus that modern robotic systems must be
designed for resilience, reconfigurability, and human co-presence. As such, it contributes to
a broader trend in mechanical engineering: one that favours modularity, sensor fusion, and
semantic understanding over hardwired, pre-specified behaviours.

In sum, the thesis demonstrates that perception in collaborative robotics is no longer a
question of isolated performance gains in calibration or detection. Rather, it is a systems-level
challenge—one where reliability, flexibility, and integration define the quality and safety of

human-robot interaction.

6.4 LIMITATIONS AND OPEN CHALLENGES

Despite the contributions presented in this thesis, several limitations and open challenges
remain, highlighting areas for further refinement and future investigation. These constraints
affect both the calibration and pose estimation components and reflect broader gaps identified
in the literature on perceptual systems for collaborative robotics.

On the calibration side, while the proposed framework achieves accurate results across
both static and hand-eye configurations, it assumes sufficient environmental structure and
visibility for robust visual feature extraction. In environments with poor texture, reflective
surfaces, or limited field of view, conditions common in industrial or cluttered settings, the
reliability of calibration may deteriorate. This limitation is consistent with findings by Horn
et al. [66] and Hua et al. [51], who note that traditional calibration methods often struggle in
unstructured or low-feature scenes. Although targetless or geometric feature-based approaches
mitigate this issue to some extent, they may introduce higher uncertainty or require longer
observation windows.

A second limitation concerns the temporal rigidity of the current calibration method.
The pipeline operates in an offline mode and does not yet support online or incremental

recalibration, which is a critical requirement in reconfigurable or long-duration deployments.
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As pointed out by Furgale et al. [9] and discussed in Chapter [2] online calibration remains an
unsolved problem for many robotic platforms. In dynamic settings, where sensors may shift
due to thermal drift, vibration, or workspace rearrangement, the lack of adaptive recalibration
could lead to spatial inconsistencies and degraded performance in downstream perception
tasks.

Regarding 3D human pose estimation, the system developed in this thesis is limited to
static, pre-calibrated multi-camera setups and assumes the presence of a single user within the
workspace. While this design simplifies geometric reasoning and enables accurate triangulation,
it does not address scenarios involving multiple overlapping individuals, occlusions, or rapid
motion. Multi-user tracking, in particular, introduces significant complexity in terms of
identity maintenance, temporal coherence, and robustness to visual ambiguity [113], [117].
These challenges are especially relevant for industrial settings, where operators may move
unpredictably or interact with the robot simultaneously.

Real-time performance is another critical constraint. Although the pipeline achieves
acceptable processing rates for moderate frame sizes, it has not yet been optimised for em-
bedded or resource-constrained platforms. Many industrial deployments require tight latency
budgets and deterministic behaviour, especially in safety-critical applications. Models such as
STIGANet |126] and MotionAGFormer [96] attempt to address this through architectural
efficiency and temporal reasoning, but trade-offs remain between speed, accuracy, and general-
isability. The lack of formal evaluation of latency, memory usage, or jitter under deployment
conditions represents a limitation of the current work.

Additionally, the current implementation assumes full camera calibration is available and
remains valid throughout operation. As noted in the literature [38], [47], pose estimation
pipelines are often sensitive to small calibration errors, especially in triangulation-based
systems. In practice, even minor misalignments may introduce significant degradation in 3D
joint accuracy. This highlights the need for tighter coupling between calibration and estimation
modules, as well as the development of error-aware or self-correcting pose estimation pipelines.

Finally, the system has been evaluated in controlled environments with standard illumina-
tion and limited background clutter. Its robustness under varying lighting conditions, sensor
noise, or environmental occlusions remains to be systematically studied. As observed by Bauer
et al. [115] and Ye et al. |114], real-world deployments often involve dynamic changes that
cannot be fully captured in standard lab-based validations.

In summary, while the methods presented in this thesis address several key challenges
in sensor calibration and 3D human pose estimation for collaborative robotics, important
limitations persist. Addressing these open challenges will be essential for transitioning these
capabilities from prototype systems to robust, deployable perception modules in real-world

industrial environments.

6.5 FUTURE RESEARCH DIRECTIONS

Following the limitations and open challenges identified throughout this thesis, several

promising directions emerge for future research. One clear extension involves the development
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of online or adaptive calibration strategies. While the proposed method achieves accurate
extrinsic estimation for both simulated and real-world deployments, it currently assumes a
static configuration during the calibration phase. This limits applicability in long-term or
reconfigurable setups, where sensor positioning may change due to drift, mechanical vibration,
or workspace reconfiguration. As highlighted by Furgale et al. |9], continuous or opportunistic
calibration is essential for maintaining perception accuracy over time. Adaptive approaches
that integrate calibration into runtime estimation, potentially through joint optimisation
frameworks or factor graph methods, could enable robust operation in dynamic environments.

A second line of inquiry concerns the integration of richer multi-modal sensing. Although
this thesis supports RGB, RGB-D, and configurations, perception systems could
benefit from the fusion of inertial, thermal, or radar data. Prior work has demonstrated that
combining inertial cues with vision improves robustness under motion and lighting variation [9],
while others have explored thermal-RGB fusion in constrained domains [130]. Extending the
current framework to handle loosely or asynchronously coupled sensors would pose challenges
in synchronisation and calibration but could unlock new application domains in poorly lit,
cluttered, or safety-critical environments.

Third, there is a need to strengthen the coupling between perception and control. Although
this thesis focuses on the perceptual layer, real-world systems require integration of calibrated
sensing into control loops that govern robot behaviour in response to human motion. Recent
developments in adaptive planning and semantic reasoning, such as those described by Baptista
et al. [11] and Argyrou et al. [16], rely on accurate spatial understanding to implement
anticipatory behaviours. Future research should explore how pose estimates and uncertainty
metrics can inform predictive or reactive control strategies, closing the loop between sensing
and action in collaborative cells.

Lastly, broader benchmarking under diverse real-world conditions is essential to assess
generalisability. Although this thesis validates its methods on representative use cases, further
experimentation is needed across varying lighting, body types, workspace geometries, and
occlusion levels. As emphasised by authors such as Bauer et al. [115] and Fiirst et al. [113],
most current datasets fail to reflect the complexity of industrial human-robot interaction.
Creating realistic benchmarks with annotated 3D pose and ground truth calibration, especially
under partial visibility and asynchronous sensing, would greatly advance reproducibility and
deployment-readiness.

In summary, future developments should aim for perception systems that are not only
accurate, but also adaptive, multi-modal, and tightly integrated into robotic control architec-
tures. The contributions of this thesis provide a foundation upon which these capabilities can

be developed and validated.

6.6 FINAL REMARKS

In conclusion, this thesis provides a cohesive set of methodological, experimental, and
implementation contributions to the field of collaborative robotics. The work demonstrates

that accurate sensor calibration and robust human pose estimation are not isolated challenges,
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but mutually reinforcing components of a perceptually intelligent robotic system. By offering a
novel calibration framework, validating it in dynamic multi-sensor environments, and applying
it to improve spatial awareness in human tracking, the thesis lays a strong foundation for
future research and development. The tools and insights presented here are expected to
support safer, more reliable, and more capable human-robot collaboration across a range of

industrial and research settings.
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